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A b s t r a c t  

An approach is represented to render hair in real-time by using a small number of guide 

strands to generate interpolated hairs on the graphics processing unit (GPU). Hair 

interpolation methods are based on a single guide strand or on multiple guide strands. 

Each hair strand is composed by segments, which can be further subdivided to render 

smooth hair curves. The appearance of the guide hairs as well as the size of the hair 

segments in screen space are used to calculate the amount of detail, which is needed to 

display smooth hair strands. The developed hair rendering system can handle guide 

strands with different segment counts. Included features are curly hair, thinning and 

random deviations. The open graphics library (OpenGL) tessellation rendering pipeline 

is utilized for hair generation. 

The hair rendering algorithm was integrated into the Frapper’s character rendering 

pipeline. Inside Frapper, configuration of the hair style can be adjusted. Development 

was done in cooperation with the Animation Institute of Filmakademie Baden-

Württemberg within the research project “Stylized Animations for Research on Autism” 

(SARA). 

 

Keywords: thesis, hair, view-dependent level of detail, tessellation, OpenGL, Ogre, 

Frapper 
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1 .  I n t r o d u c t i o n  

Real-time hair rendering has been a huge challenge in the games industry and for 

simulation applications. On a human head are up to 150000 hairs. Main challenge is to 

be able to render this huge amount of hair strands in real-time. With modern graphics 

processors it becomes possible to render thousands of hair strands on the GPU. How can 

modern graphics cards be utilized for hair rendering? Is it possible today to render 

realistic hair in real-time? 

These questions were answered within the research project SARA for Institute of 

Animation of Filmakademie Baden-Württemberg. The official name of the project is 

“Impact of non-photorealistic rendering for the understanding of emotional facial 

expressions by children and adolescents with high-functioning Autism Spectrum 

Disorders”. The project deals with the creation and animation of computer-generated 

facial expressions in different levels of abstraction for the purpose of investigating how 

these different facial expressions are perceived by subjects with Attention-

Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders (ASD). 

Filmakademie Baden-Württemberg cooperates for this research project with University 

of Konstanz and University Hospital Freiburg. The project is funded by DFG. 

One area of the project is the rendering of realistic hair in real-time. For hair rendering 

there is already an implementation. The implementation uses predefined geometry. For 

every single hair strand vertices, normals, tangents and texture coordinates are stored in 

a mesh file. This leads to a huge amount of data, which needs to be loaded, transferred 

to GPU memory and rendered. 

Target of this thesis is to research different techniques to reduce the amount of data that 

needs to be stored and to increase the frame rate for rendering the virtual character. It is 

investigated how hair geometry can be directly generated on the GPU. The idea is to use 

a small number of guide strands and generate new hair strands out of these guides. 

Techniques are compared, which use a single guide strand as well as multiple guide 

strands as input. Different distribution patterns and randomization techniques for the 

position of hair and shape of hair are tried out. It is investigated how level of detail 

(LOD) techniques can be utilized to be able to render smooth hair strands and at the 

same time save processing resources for an increased frame rate. Additionally, hair 

shading techniques are evaluated for rendering of realistic hair. 

Related work, which already has been done in real-time hair rendering is analysed in 

section 2. Afterwards, requirements for the development of the hair rendering system 

are described. In section 4 the features and functionality OpenGL tessellation rendering 

pipeline are shown. Section 5 focuses on the implementation of the hair rendering 

system. Topic in section 6 is the integration of the developed hair rendering system into 
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the character rendering system of the Frapper framework. In the following section the 

performance of the developed hair rendering system is tested and compared against 

related work. The final section concludes this thesis and points out possible areas of 

future research. 
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2 .  R e l a t e d  W o r k  

In the past, real-time hair rendering could only be done with a mesh representation of 

the hair on which a material was applied. 

 

Figure 1: Hair rendering of Ruby by [Scheuermann 2004] 

One attempt to put hair on a human mesh was done by [Scheuermann 2004] of ATI 

Research and presented at Siggraph 2004. Scheuermann’s approach is based on the hair 

shading model of [Kajiya and Kay 1989] and specular highlights model of [Marschner 

et al. 2003]. The hair model consisted of two-dimensional (2D) layered polygon patches 

with a main texture for the structure and an opacity map for the diversity of the hair. 2D 

layered polygon patches were used instead of lines because they have a low geometric 

complexity, which reduced load for the vertex shader. Shading was done with a diffuse 

lighting term, two specular highlights and ambient occlusion. The first specular 

highlight is the direct reflection of the light. The second specular highlight is 

transmitted into the hair in direction of the root and internally reflected back to the 

viewer. As a result, the colour of the second specular highlight is modulated by the hair 

colour and the shape of the highlight is depolarized. Additional calculations need to be 

executed for depth sorting, which is done entirely on the GPU. Four render passes are 

needed for this operation. This hair technique was used by ATI for their Ruby demo 

“The Assassin”. 

In 2004 [Nguyen and Donnelly 2004] developed the Nalu Demo for the NVIDIA 

Geforce 6800 launch. Their target was to render realistic hair in real-time. The hair of 

Nalu was long, blond and needed to flow underwater. 4095 individual hairs were 

represented as line primitives. These lines had a total of 123000 vertices. However, this 
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number of hairs was too huge for dynamics and collision detection calculations. The 

solution was to use hundreds of control hairs instead. Segments of the control hair did 

not have a uniform length. Segments near to the hair root were short and further away 

from the root were longer. This allowed to render long hairs with a smaller vertex count. 

A scalp mesh defined the roots of the control hairs. 

 

Figure 2: Screenshot of NVIDIA Nalu demo [NVIDIA 2004] 

For every render pass tangents of the control hairs were calculated. The lines were 

converted into Bézier curves and tessellated to get smooth lines. These smoothed lines 

were interpolated to increase the hair density. For interpolation three control hairs were 

selected according to their position in the scalp mesh. Barycentric interpolation was 

used to calculate a new vertex position out of three vertex positions of the guide hairs. 

The barycentric coefficients were random generated, which gave a random distribution 

of hair strands within the scalp mesh triangle. The result hair had the same number of 

vertices as the guide hairs. A dynamic vertex buffer was used to hold the vertex data. 

Dynamics and collision computations were based on a particle system, where every 

control hair vertex represented one particle. Distance constraints between particles were 

used to control the hair length. Hair segment repelled when they were too close to each 

other and contracted if they were too far apart. Collision was done only with spheres. 

Spheres represented the head and upper body of Nalu as well as every vertex of the 

guide strands. 

For the local reflectance model of the hair, the lighting model of [Marschner et al. 2003] 

was used, which describes how hair fibres scatter and reflect light. The hair fibre is 

described as a translucent cylinder. Three possible paths that light may take through the 
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hair are considered. The first is a direct reflection of the light, which bounces of the 

surface. In the second path light is refracted into the hair and refracted out again. In the 

third case light refracts into the hair, is reflected inside the surface of the hair and 

refracted out of the hair. [Nguyen and Donnelly 2004] also considered self-shadowing 

of the hair. For this purpose they used opacity shadow maps, which were developed by 

[Kim and Neumann 2001]. 

2.1. NVIDIA Fermi Hair Demo 2008 

Sarah Tariq implemented an impressive real-time hair simulation and rendering demo 

based on the work of the NVIDIA Nalu Demo. The demo with source code was 

published at [NVIDIA 2010b]. Papers and presentations about Sarah Tariq’s work are 

available at [Tariq and Bavoil 2008b; Tariq 2010c; Yuksel and Tariq 2010; Tariq and 

Bavoil 2008a; Tariq 2010d, 2010b, 2010a, 2008]. 

 

Figure 3: NVIDIA Fermi Hair Demo screenshot [NVIDIA 2010b] 

The hair demo uses 166 simulated hair strands. The rest of the hairs are generated and 

interpolated on the GPU with two different interpolation patterns called single strand 

and multi strand interpolation. 

Single strand interpolation uses one guide hair. The interpolated hair has the same shape 

as the guide hair and is placed with a random offset in two directions in a plane that is 

perpendicular to the guide strand. A predefined maximum radius is set to control the 
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maximum distance of the interpolated strand to the guide strand. Single strand 

interpolated hair results into a clumpy hair style. For the given 166 guide strands up to 

10624 strands can be generated on the GPU. 

Multi strand interpolation works the same way as in [Nguyen and Donnelly 2004]. The 

interpolated strand is created by linearly interpolating the attribute of three guide 

strands, which are selected according to the triangle vertices of a scalp mesh. 

Coefficients values for barycentric interpolation are generated randomly. Result of this 

interpolation scheme is a uniform look. The number of strands that can be generated is 

dependent on the face number of the scalp mesh. The demo scalp mesh consists of 294 

faces, which allow up to 18816 hair strands generated on the GPU with a single draw 

call. 

Hair geometry is rendered as camera facing quads. The problem with rendering lines is 

that the width of lines can only be changed per draw call. Width of hair segments need 

to be different to be able to render hair strands with varying width towards the hair tip. 

Varying width would only be possible for lines with multiple draw calls. A draw call is 

an expensive operation and the number of draw calls should be minimized. Therefore 

rendering lines with multiple draw calls is bad for performance. Additionally, a flexible 

hair segment width is needed for level of detail operations. Furthermore, it is not 

possible to apply textures to lines. Camera facing quads can be textured and have a real 

world width. It is also possible to taper hair towards its end with camera facing quads. 

However, rendering quads is more expensive than rendering lines. All calculation prior 

to rendering like simulation, tessellation and interpolation, are done with lines. In the 

geometry shader those calculated lines are expanded to camera facing quads. 

The hair demo utilizes the tessellation rendering engine of modern GPUs, which is 

perfect for the creation of large amounts of data on the GPU. The main bottleneck is the 

bandwidth between central processing unit (CPU) and GPU. It is faster creating data on 

the GPU than uploading data from the CPU to the GPU. It is also possible to have a fine 

grained and continuous level of detail with the tessellation engine. 

The demo also works with DirectX 10 capable graphic cards. The geometry shader is 

not used for the generation of hair because it would be extremely inefficient. The 

geometry shader is optimized for relatively small amounts of data expansion. A good 

use case for the geometry shader is to expand lines to camera facing quads. This raises 

the question how it is possible to generate geometry without the tessellation engine and 

the geometry shader? The idea is to render dummy hair strands with empty vertex and 

index buffer. A line strip render call with a vertex count of m*n needs to be executed, 

where m stands for the maximum number of vertices per strand and n is the number of 

interpolated strands to render. Rendering for this operation is reasonably fast because 

there are no real attributes used. The evaluation of vertex attributes can be done in the 
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vertex shader. Guide strand attributes are stored into textures or buffers. Stored data are 

length, width and vertex positions of the guide strands. The GPU uses a different vertex 

index (ID) for each call of the vertex shader, which allows to select the right vertex 

attributes of the strand segment that needs to be rendered. 

The implementation with the tessellation engine compared to the DirectX 10 

implementation is faster, easy and intuitive, more programmable, supports continuous 

level of detail, and the tessellation engine saves memory and bandwidth. The DirectX 

11 tessellation engine introduces three new shader stages, the hull shader, the tessellator 

and the domain shader, which are placed between the vertex shader and the geometry 

shader in the DirectX 11 shader pipeline. For the tessellation engine the isoline domain 

was used. The hardware tessellator creates for each patch a number of isolines with 

multiple line segments per line. A patch with a single control point was used as 

primitive topology. In the hull shader is calculated how many lines are generated and 

how many segments per line are tessellated. There is a hardware limitation for how 

many lines and line segments can be generated with the tessellation engine. Per patch a 

maximum of 64 isolines with 64 segments can be created. The hull shader allows to 

calculate the level of detail per line segment. 

In the Fermi Hair Demo the level of detail is dependent on the distance of the camera to 

the head. With a higher distance less hair strands with a thicker width are generated. 

This is done to achieve no visible reduction in density of hair and at the same time save 

computing resources for rendering. A density map and thickness map were used for a 

more precise level of detail. Artists can define in the density map, which areas of the 

scalp should have a high density of generated hairs. This allows to use the limited 

computing resources at places of the scalp, where it is most important to show hairs. In 

the thickness map it can also be defined how thick the hair should be. The final 

positions of the line segments vertices are calculated in the domain shader. 

Following steps are performed for hair rendering. First, the guide hairs are imported. 

Every frame, guide hairs are simulated, tessellated, interpolated and rendered. Shading 

operation and shadow calculations are executed for the final rendering of the hair. These 

multiple operations have to be divided in multiple render stages. At the end of each 

stage, data is streamed out to the next stage to minimize re-computation. In the first 

stage, simulated guide strands are tessellated and streamed out. These tessellated strands 

are interpolated in the next stage. Afterwards, the final hair is rendered for shading into 

shadow maps. The last stage is to render the final hair to the screen. 

The guide hairs are smoothly tessellated with uniform cubic b-splines, which 

automatically handle continuity. To tessellate hair strands with uniform cubic b-splines 

four vertices of the strand are needed per patch. The end points of the guide hair need to 

be repeated because uniform cubic b-splines do not interpolate the endpoints. 
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It is also possible to render curly hair in the demo. Therefore, additional curl offsets are 

pre-computed and encoded. The result is stored in a buffer or a texture. Curl offsets can 

be created procedurally as in the demo. It is also possible that artists create these curl 

offsets manually. 

Another important feature of the NVIDIA hair demo is random variations between hair 

strands. Without this feature hair looks smooth and synthetic. Randomness is applied 

when hair is interpolated. Two types of deviations are defined. The first type is small 

deviations near the tips, which is applied to 30% of the hair strands. The second type is 

applied to 10% of the hair strands and produces deviations along the whole strand. 

Hair simulation is another important part of hair rendering. All simulations are done on 

a small number of guide strands. Tariq used a particle constraint system. All guide 

strand hair vertices are simulated as particles. Three constraints are applied for 

simulation: distance, collision and angular forces constraint. With the distance 

constraint length of hair is maintained, which prevents hair from stretching and 

compressing. The angular forces constraint maintains the shape of the hair. The 

collision constraint keeps hair outside of collision obstacles and handles collision 

between guide hair strands. 

Those constraints are applied in parallel. Two constraints can be updated in parallel 

only if they are independent of each other. In case of hair segments this means that they 

share no vertex. The solution to be able to calculate constraints in parallel is to 

subdivide independent constraints into two groups. Calculate the second group after the 

calculations of the first group are finished. 

Hair simulation is calculated entirely on the GPU. In Direct3D 11 the compute shader is 

used for hair simulation. With the compute shader, code is easier to write and can be 

faster. All constraints can be satisfied in a single function call using shared memory and 

all vertices of a single strand are in the same thread group. For the Direct3D 10 

implementation GPGPU1 pingponging technique is used. Constraints are calculated in 

the geometry shader. The results are written to stream out and can be used at the next 

rendering pass. Tariq also used a level of detail system for the simulation of the hair. 

For high level of detail, simulation is done every frame and for low level of detail, 

simulation is done once every n frames, where n is the number of frames without 

simulation calculations. 

One issue for simulation is that multi strand hair interpolation leads to hair penetration 

into collision objects. For the solution of this problem it was important that no 

simulations should be done on the interpolated hair strands. The solution for that 

problem was to switch to single strand interpolation when it is detected that multi strand 

                                                 
1 general purpose computing on graphics processing units (GPGPU) 
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interpolation leads to penetration of collision obstacles. Therefore, all hair strand 

vertices, which penetrate collision obstacles and all vertices beneath penetration need to 

change the interpolation mode. First, a pre-pass is executed, where all the interpolated 

hairs are rendered to a texture. All vertices of an interpolated hair strand are rendered to 

the same pixel. It is checked for each hair vertex if it collides with a collision obstacle. 

If a collision occurs, the ID of the hair vertex is saved to the pixel. The ID is the number 

of vertices that separate the current vertex from the hair root. If no collision happens, 

output value is a large constant number. Result is a texture that encodes for each 

interpolated guide strand weather any of its vertices intersect a collision object and at 

which position of the guide strand the collided vertex is located. For the hair 

interpolation this texture is used to decide if the interpolation mode has to be switched. 

For a smoother transition a blending zone is used above the first intersection to blend 

from multi strand to single strand interpolation. 

A problem related with the hair strands is their thinness. This leads to unpleasant 

aliasing effects when projected onto a screen because they are often much thinner than a 

pixel. Solution for this problem is antialiasing or render thicker lines with transparency. 

Light coloured hair is semi-transparent. Handling transparency would also mean an 

improvement in visual quality. Antialiasing techniques, which can be used are super 

sampled anti-aliasing (SSAA) or multi sampled anti-aliasing (MSAA). For SSAA the 

scene is rendered in a higher resolution and down sampled. MSAA is implemented in 

hardware and therefore very fast. MSAA performs on the pixel shader a depth/stencil 

test independent of each other. For 4xMSAA the vertex shader is executed once and the 

depth/stencil test is executed four times. In the demo a combination of 8xMSAA and 

2xSSAA was used. 

According to Tariq transparency can be done with alpha blending. It hides aliasing. The 

problem is that the geometry has to be sorted from back to front. This means that every 

line segment needs to be sorted. If sorting is executed, it should be done on the GPU. 

Quick sort can be calculated on the GPU. Therefore line segments need to be partitioned 

and sorted according to their distance to the camera. The geometry shader can be used 

for this operation. A faster but more complicated algorithm is radix sort. Radix sort can 

be computed on the GPU using CUDA. Depth sorting can be avoided with fake 

transparency by dividing the hair into three subgroups and blending the result together. 

Tariq recommended two approaches. For a performance oriented approach multi-layer 

fake transparency and MSAA should be used. If quality is the main target alpha 

blending with GPU sorted line fragments with MSAA is the better solution. 

For hair shading it has also an effect that hair strands are very thin. Because of that 

tangents are used instead of normals. Tangents have to represent the direction of a hair 

strand segment and have to be smooth. Additionally, jitter and noise is used for tangents 
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to break strong highlights. The used lighting model was [Kajiya and Kay 1989]. It is not 

completely physical based. The diffuse term integrates lambertian surface along a thin 

cylinder. The specular term is based on phong using thin cylinders. A physical based 

alternative would be [Marschner et al. 2003]. 

Shadows were handled with deep opacity maps of [Yuksel and Keyser 2008b, 2008a]. 

These volumetric shadow maps are suitable for rendering semi-transparent hair. Deep 

opacity maps is a real-time, artefact free algorithm, which uses a depth map and one 

opacity map per layer. The algorithm needs three passes. The first pass is for the 

creation of the depth map, which is rendered from the position of the light source. The 

second pass is for the calculation of the opacity map layers. Three layers give a 

sufficient result. Layer distances can be constant, powers of 2, Fibonacci or linear. The 

third pass is to render the final image to screen. As an analysis of the source code of 

[NVIDIA 2010b] has shown, deep opacity maps were not enabled for this demo. Only a 

simple shadow map is generated, which handles shadowing of the hair for one light 

source. However, there is source code of the implementation of deep opacity maps 

available in [NVIDIA 2010b]. 

The demo reaches 15 frames per second (FPS) with an NVIDIA GeForce 8800 GTX, a 

resolution of 1280x1024, 8xMSAA, 166 simulated strands, 10220 rendered strands and 

1.6 million triangles. 

2.2. NVIDIA HairWorks 

 

Figure 4: Screenshot of NVIDIA HairWorks Viewer [NVIDIA 2014b] 

At 26th June 2014 NVIDIA announced the release of their HairWorks tool chain for 

real-time hair and fur rendering [NVIDIA 2014c]. This technology was previously 
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presented by [Kim 2014] at GTC 2014. NVIDIAs HairWorks is an enhancement of the 

NVIDIA Fermi Hair demo and was made ready for production. This technology was 

used for the game Call of Duty Ghosts. Here the fur of the wolves and the dog Riley 

was rendered and simulated with NVIDIA HairWorks. In The Witcher 3: Wild Hunt the 

technology of NVIDIA HairWorks was used for the hair of the main character Geralt 

and for other characters. Furthermore, the fur technology was applied to wolves and 

monsters of this game [Burnes 2014]. HairWorks supports a Maya and 3ds Max model 

pipeline. Additionally, NVIDIA has implemented the NVIDIA HairWorks Viewer tool 

for iterating and fine tuning. The technology is still based on the tessellation engine and 

includes view-space culling, back face culling, continuous distance LOD and 

continuous detail LOD. Continuous distance LOD adjusts based on the distance of the 

camera, hair density and thickness. Continuous detail LOD handles hair density and 

thickness during close up moments. The simulation was also improved to be more 

efficient. NVIDIA used therefore [Müller et al. 2012], which is based on [Kim et al. 

2012]. For fur rendering they were able to render 500000 hairs out of 10000 guide hairs. 

Main bottleneck here was the rendering engine. Tessellation stages hull shader and 

domain shader had the highest execution time. Simulation took up only 10% to 20% of 

the overall time. Shader performance had to be lowered for flexibility. This adds the 

ability to pass additional attributes for more control over the hair style. The SDK is still 

in closed beta and requires licencing to get access to the source code. NVIDIA is 

working on the improvement of their technology and tools. They plan to enhance long 

hair dynamics, body collision and hair interaction. They also need to adapt to engine 

requirements like deferred shading support, motion blur, depth of field, ambient 

occlusion and shader caches. 

2.3. AMD TressFX 

Advanced Micro Devices (AMD) TressFX is a high-quality real-time hair rendering and 

physics system, which was first used for the game Tomb Raider in 2013. It was the first 

hair strand based hair rendering system used inside a video game. At FMX 2013 [Engel 

and Hodes 2013] presented about their integration of this technology inside the Tomb 

Raider and how they applied hair rendering and simulation to Lara Crofts hair. TressFX 

is based on [Yu et al. 2012]. Enhancements and improvements of this technology were 

later done by [Bilodeau and Han 2013] and released as TressFX11 v2.0 [AMD 2013]. 

In 2014 an article about hair rendering [Martin et al. 2014] and an article about hair 

simulation [Han 2014] were published in [Engel 2014]. 
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Figure 5: AMD TressFX11 v2.0 screenshot [AMD 2013] 

With TressFX thousands of hair strands are simulated and rendered on the GPU. For 

physics simulation on the GPU Direct Compute is used. The capabilities of shader 

model 5.0 vertex shader is utilized for rendering. Lara Crofts hair had a spline count of 

about 21042 hair strands with 16 vertices per strand. These source hair strands were 

duplicated with an offset to achieve increased hair coverage. Flexibility is another key 

feature of TressFX, which allows different hair styles and different conditions for the 

hair. Hair strands are organized into primitive groups to support different configurations 

and therefore different simulation behaviour of hair parts. The hair strand vertex count 

has to be the same for all hair strands within a primitive group. Lara Crofts hair was 

separated into bangs, cap, fringe and ponytail. For each hair strand position, tangent, 

local/global quaternions, resting length and thickness were saved. The TressFX test 

model is organized into four primitive groups, which are called hair free, hair front long, 

hair pulled and hair tail. Hair tail has a vertex count of 14 vertices per hair strand and 

the other primitive groups have a vertex count of 11 vertices per hair strand. The strand 

count all together is 21809 hair strands. 
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Figure 6: Rendering pipeline in Tomb Raider [Engel and Hodes 2013] 

Figure 6 shows the render pipeline, which was used in Tomb Raider. The tessellation 

engine and the geometry shader was not utilized. Geometry expansion was done in the 

vertex shader. Here each hair segment is expanded into two triangles with a world-space 

direction vector, which is perpendicular to the hair. This direction vector is calculated 

with the cross product of tangent and view vector. A camera facing quad has at least a 

width of one pixel in screen space. Similar to 2.1 an empty vertex buffer and index 

buffer are used for the draw call to render the hair. The vertex ID is used to look up the 

right vertex data, which is saved in a buffer or a texture. The vertex count of the draw 

call is calculated dependent on the number of segments, which need to be rendered. 

This number is multiplied with 6 because each segment will be expanded to two 

triangles, which have a vertex count of 6. Output of the vertex shader is the position of 

the vertex, a tangent, the left hair edge and right hair edge in screen space, and texture 

coordinates. The left hair edge and right hair edge is needed for antialiasing calculations 

inside the pixel shader. 

Lighting was done according to [Kajiya and Kay 1989] and [Marschner et al. 2003]. 

TressFX uses an approximation of [Marschner et al. 2003] when rendering two specular 

highlights. Additionally, a diffuse texture is used to support variation in hair colour. 

Crystal Dynamics had two rendering profiles for wet and dry hair in Tomb Raider. 

Antialiasing was not done with SSAA or MSAA. An image based solution was used 

similar to geometric post-process anti-aliasing (GPAA) [Persson 2011]. Every hair 

strand is anti-aliased manually. The location of the hair fibre edges are used to evaluate 

each hair fragments distance with respect to these edges. The farther the pixel is inside 

the hair fibre, the more the coverage value is increased. Is the pixel more than 0.5 pixels 
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inside the hair fibre, the coverage value is set to 1.0. Is the pixel on the hair fibre edge, 

coverage is 0.5. Coverage has the value of 0 when the pixel is more than half a pixel 

outside of the hair fibre. 

For self-shadowing a simplified version of deep shadow maps [Lokovic and Veach 

2000] was used. First, hair splines are rendered as lines to a shadow map. Afterwards 

depth in the shadow map is compared with the depth of the hair strand that is currently 

drawn. The distance between the hair strand that is currently drawn and the hair strand 

that is closest to the light determines how dark the shadow value of the current hair 

strand is. The bottom hair receives darker shadow values and top hair receives brighter 

shadow values. Each shadow value is stored in a per-pixel linked list (PPLL). 

A PPLL was used for order independent transparency (OIT). The usage of a PPLL is 

based on [McKee 2011]. Transparency helps to simulate the presence of thin individual 

hair strands. For every pixel on the screen, which has one or more layers of hair, a 

linked list is generated containing each overlapping hair fragment. Two passes are 

executed. In the first pass, an A-buffer is filled with an unsorted linked list for each 

pixel on screen that contains hair fragments. Therefore, all strands are rendered and 

shaded in the pixel shader. In the second pass, the a-buffer of the previous path is 

traversed and the data is sorted in a k-buffer for the topmost hair pixels. 8 layers are 

sufficient enough for rendering. The influence of the 8th layer is barely over 1%. Sorting 

is performed using the depth stored in the linked list node. At the end the nearest k 

fragments are rendered in right order back to front. The remaining layer are just blended 

in out of order. This technique for transparency only works if hair does not take up the 

whole screen. Otherwise, it causes artefacts and the hair is not rendered correctly on 

screen. 

First requirement for the simulation of TressFX was performance. More than 20000 hair 

strands needed to be simulated and the simulation should be possible within a game, 

where available resources for hair simulation are limited. This is the main reason 

because performance is more important than correct hair simulation. Other requirements 

were more artist based. The simulation should maintain a predefined hair style. 

Additionally, different conditions like wet and dry should be supported by the 

simulation. Hair should also be stable, respond to wind, gravity and external forces, and 

should allow collision handling with head and body. The simulation is based on [Han 

and Harada 2012]. 

Three constraints were used to achieve these requirements: global shape constraint 

(GSC), local shape constraint (LSC) and edge length constraint (ELC). GSC helps to 

preserve the initial hair shape. Initial positions of each hair strand vertex is saved and 

serves as the goal position of each particle. It is an easy and cheap solution and helps to 

maintain the hair style. As a result, detail of the hair simulation is lost. LSC is to 
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simulate bending and twist effects. The last constraint is ELC. This is a hard constraint 

to simulate inextensible hair. ELC can be applied in parallel and does not converge for 

fast movement. For the case of fast movement, the constraint is switched to adhoc 

constraint, which updates only one vertex position at a time, starting from the root of the 

hair strand. The problem with the adhoc constraint is that it can add extra energy to the 

system. The adhoc constraint is only used when absolutely necessary. 

Most of the simulation calculation is done on the GPU. The CPU is only needed at start 

up to load hair data and compute state values, which also can be precomputed. On the 

GPU the simulation loop is executed. First, gravity is applied and Verlet integration is 

executed. Afterwards, GSC, LSC, wind and ELC are applied. Collision is handled at the 

end of the loop. Shader code is separated into 5 shaders. The first shader is for gravity, 

integration and GSC. In the second shader LSC is applied. Wind application and length 

constraint is executed in the next shader. The fourth shader is responsible for extra 

length constraint for erratic movement to handle fast movement of the hair. The final 

shader does collision handling. 

For simulation in Tomb Raider special cases needed to be handled. The simulation does 

not work when hair is placed upside down like in the sac swing part of Tomb Raider. At 

the first level Lara Croft is hanged on the ceiling upside down and needs to swing like a 

sack to release herself from the chains. An additional hair geometry had to be designed 

for this scene to give a realistic look. Other special cases were wet hair, weapon aiming 

and cinematics. Different hair settings were used for these situations. Blending between 

different hair settings was also possible. Settings were made for dry, mid wet, wet, 

weapon aiming, upside down, upside down sac swing and special cinematic clamp 

down. 

The first version of TressFX only supported forward rendering. As a result, all hair 

fragments were shaded before they were sorted. Many hair segments were shaded that 

were not visible. At GDC 2014 [Thibieroz and Hillesland 2014] presented 

improvements, which were implemented into TressFX. One improvement was to use 

offline created vertex and index buffers to draw the hair indexed. Distance-based level 

of detail (LOD) was also an improvement. The input line segments have a random 

order. It is possible to render fewer lines with thicker fragments for lower level of detail. 

Another improvement to save performance was the use of deferred shading. With 

deferred shading hair fragments are shaded after the sort operation. This allows to use a 

level of detail for shading. Only the top most hair fragments have a huge influence on 

the final image quality. Tail fragments can be shaded with a simpler and faster shading 

operation. There is a very little quality difference compared to full shading, but shader 

LOD gives a much better performance. It was also presented why the tessellation engine 

was not used in their implementation. Thibieroz and Hillesland claimed that isoline 
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tessellation is not cost effective because lines have to be expanded in the geometry 

shader, which is a major impact on performance. They also think that pure vertex shader 

solution is faster and curvature is barely a problem. However, they did not back up their 

claims with test results, which compares a tessellation based version with their version. 

In conclusion, TressFX is fast enough to be used on next generation consoles like the 

PlayStation 4 and Xbox One. The deferred shading implementation gives a significant 

performance boost. There is still ongoing research to improve and expand the use of this 

technology for fur, grass and hair rendering. Especially, the quality of the simulation 

can be improved and combined in less shader stages. 
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3 .  R e q u i r e m e n t s  

Since the hair rendering for this thesis is developed at the Research and Development 

department of the Institute of Animation at Filmakademie Baden-Württemberg there are 

multiple requirements and dependencies, which influence the implementation and the 

technology, which was used. 

First, the hair has to be rendered in real-time. The target is to be able to render the 

virtual character with a frame rate of 60 FPS. The animation of the character needs to be 

calculated and additional to the hair, face geometry, eyes, eyelashes, eyebrows, the 

upper body and clothes needed to be rendered. All these assets share a frame time of 

about 16.6 milli seconds. Therefore, it is crucial to use as less time as possible for the 

rendering of the hair and at the same time keep or improve the visual quality. 

High quality hair rendering consists of the generation of the hair, lighting, shadowing, 

handling of transparency and antialiasing. All these factors needed to be evaluated 

against the rendering times. 

Level of detail was another important requirement. A target of the research project 

SARA is to find out if children and teenager with ASD or ADHD read the emotional 

states of the virtual character easier from a realistic character or an abstract character. 

Different level of detail settings allow to render fewer hair strands with a thicker width. 

Additionally, level of detail calculations should be evaluated for performance 

optimization and improvement of the visual quality of the rendered hair. 

It is not only important to be able to render multiple strands of hair on the GPU. 

Another important requirement for this project was to be able to create multiple hair 

styles and to optimize the work flow for the creation of the hair rendering engine. The 

creation of the hair should be artist friendly. Generation of guide hairs should be 

possible with Maya, 3D Studio Max and Cinema 4D. 

Another dependency of this project is that the virtual characters need to be implemented 

in the application framework Frapper [Helzle et al. 2014]. Shaders and the animation 

system were implemented into Frapper using mainly Cg shader. Frapper is based on the 

rendering engine Ogre3D [OGRE 2014], which supports in there released versions Cg, 

OpenGL2, DirectX 9 and DirectX 11. Ogre3D has also an OpenGL 3+ renderer. This 

renderer supports OpenGL shader above OpenGL 3, which also includes OpenGL 4 

features. The problem of this renderer is that it was not officially released from the Ogre 

developers. 

For the hair generation on the GPU, DirectX 11 or OpenGL 4 needed to be used in 

order to be able to utilize the tessellation functionality of modern graphics cards. Cg 

supports DirectX 11, which would have been the best solution given that it permits to 
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reuse the old Cg and at the same time uses the features of the tessellation pipeline. On 

the other hand, Cg only supports OpenGL 4 for NVIDIA graphics hardware [NVIDIA 

2014d]. Additionally, the OpenGL 3+ renderer of Ogre does not support Cg. Using 

OpenGL 4 with Cg in Ogre was therefore no option. Another argument against Cg is 

that NVIDIA stopped the support of Cg after the release of the Cg 3.1 Toolkit [NVIDIA 

2014e]. For this reason, Cg is not a shader language to utilize future improvements of 

graphics cards. 

The decision to use OpenGL 4 was also influenced by the need to implement other parts 

of the project including the non-photorealistic rendering algorithms in OpenGL. 

After evaluation of the Ogre OpenGL 3+ renderer, which has proven to be a stable 

version, it was decided to implement the hair rendering algorithms in OpenGL 4. This 

meant that all previous written Cg shader for face, eye and cloth rendering had to be 

translated into OpenGL shading language (glsl). 
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4 .  O p e n G L  T e s s e l l a t i o n  R e n d e r i n g  P i p e l i n e  

Since the hair rendering is implemented in OpenGL 4 using its tessellation rendering 

stages, a brief overview of the OpenGL 4 tessellation pipeline is provided together with 

a more in-depth look at the tessellation stages. Khronos released the specification of 

OpenGL 4.5 at 11th August 2014. The core profile [Khronos Group 2014a] and quick-

reference card [Khronos Group 2014b] gives in depth information about OpenGL 4.5. 

Another great overview of the OpenGL render pipeline gives [Khronos Group 2014c]. 
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Figure 7: OpenGL tessellation pipeline overview 
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Figure 7 shows a simplified overview of the OpenGL 4 rendering pipeline. Data can be 

streamed in a vertex buffer and index buffer. The vertex buffer stores all specific vertex 

data, which includes the position of the vertex. Optional attributes can be added to the 

vertex buffer. Often normals, tangents, texture coordinates or blend weights are used as 

input. It is up to the programmer to decide, which input values need to be used. The 

index buffer helps to reduce the size of the vertex buffer because no duplicates have to 

be saved in the vertex buffer. Its use is optional as objects can be drawn with and 

without index buffer. 

The programmable shader stages are vertex shader, tessellation control shader (TCS), 

tessellation evaluation shader (TES), geometry shader and fragment shader. TCS, TES 

and geometry shader are optional. TCS, tessellator and TES form the tessellation shader 

stage. All shader stages have access to memory resources, which consist of textures, 

buffers and constant buffers. 

4.1. Vertex Shader 

The vertex shader is the first 

programmable shader stage of the 

OpenGL tessellation pipeline. As input the 

vertex shader gets a vertex stream. The 

vertex shader is executed once per input 

vertex of the vertex stream. Calculations 

and transformation can be performed per 

vertex. Additional data can be passed 

through to the next programmable shader 

stage. If tessellation is enabled, data will 

be passed through to the TCS. Otherwise, data will be passed through to the pixel 

shader. In the vertex shader geometric transformation has to be performed if the 

tessellation stage is disabled. The resultant vertices of the input shader are assembled 

afterwards into primitives. Additional fixed 

inputs that can be accessed from the vertex 

shader are gl_VertexID and 

gl_InstanceID. gl_VertexID is the index 

of the current vertex and gl_InstanceID is 

the index of the current instance. OpenGL also 

has predefined outputs for the vertex shader, 

which is defined in an interface block without an 

instance name. The most important one is gl_Position, which is the output vertex 

data. This variable has to be used for the output data. gl_PointSize is only used for 

Figure 8: Vertex shader 

out gl_PerVertex 
{ 
 vec4 gl_Position; 
 float gl_PointSize; 
 float gl_ClipDistance[]; 
} 

Figure 9: Vertex shader predefined output 

Input Assembler

Vertex Shader

vertex data
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point primitives. It describes pixel width and height of the point. The last predefined 

output is the array gl_ClipDistance. Here the distance of the vertex to each clip 

plane can be defined. 

4.2. Tessellation Control Shader 

 

Figure 10: Tessellation control shader 

First, it needs to be defined how many control points will be used per primitive. The 

maximum number of output control points is hardware dependent, but never smaller 

than 32. Figure 11 shows the definition 

inside the TCS, where patch_size is 

the number of defined control points. 

The TCS is executed once per tessellation primitive. Three different primitive types can 

be handled by the tessellation engine: quads, triangles and isolines. Dependent on the 

primitive type tessellation factors need to be 

calculated. These are set in 

gl_TessLevelOuter[4] and 

gl_TessLevelInner[2]. For quads all 

tessellation levels are used. Triangles only need 

the first three outer tessellation levels and the 

first inner tessellation level. For isolines only 

the first two outer tessellation levels need to be set. Tessellation values are between 0.0 

and 64.0. If all tessellation values are set to 0.0, the primitive is not rendered and all 

shader stages after the TCS are not called for the current primitive. 

Fixed input for TCS is gl_PatchVerticesIn, gl_PrimitiveID and 

gl_InvocationID. gl_PatchVerticesIn gives the number of vertices in the 

input patch. gl_PrimitiveID is the index of the current patch and 

TCS output per control point:
[1.. GL_MAX_PATCH_VERTICES] 
control points
TCS output per patch:
patch constant data
tessellation factors

TCS output:
tessellation factors

TCS input:
[1..GL_MAX_PATCH_VERTICES] 
control points

Tessellation Control 
Shader

Tessellator

Tessellation Evalution
Shader

layout(vertices = patch_size) out; 

Figure 11: Output patch size definition 

out gl_PerVertex 
{ 
 vec4 gl_Position; 
 float gl_PointSize; 
 float gl_ClipDistance[]; 
} gl_out[]; 

Figure 12: TES predefined output 
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gl_InvocationID is the index of TCS invocations. The tessellation stage is also 

used to calculate per patch and per vertex attributes, which are passed through to the 

TES. Per vertex attributes have to be outputted in an array, which has the same size as 

the predefined number of output control points. Predefined output is the same as in the 

vertex shader. It is defined as an array for every control point. It is not necessary to set 

any of the predefined output data. 

4.3. Tessellator 

 

Figure 13: Tessellator 

The tessellator, which is also called tessellation primitive generator, is a fixed-function 

stage. Dependent on the tessellation primitive, spacing, primitive order and the defined 

tessellation factors, the tessellator generates UVW coordinates values per tessellated 

vertex and passes these values to the TES. Barycentric coordinates are calculated for 

triangles. For quads and isolines UV coordinates will be generated by the tessellator. 

Spacing can be defined as equal_spacing, fractional_even_spacing and 

fractional_odd_spacing. Tessellation levels are defined in float values. 

equal_spacing rounds up each float value to the nearest higher integer. Each edge 

is divided into n segments of the same size. Range is from one to the maximum 

tessellation value. fractional_even_spacing has range from two to maximum 

tessellation value. The tessellation value is rounded up to the nearest even integer. 

Segment sizes vary in this spacing scheme. It starts at level two with one subdivision. 

This subdivision is represented with the original vertices of an edge and one new 

generated vertex. With a tessellation value between 2.0 and 3.0, two new generated 

points move from the first tessellated vertex to one of the original vertices. This scheme 

is used to support a smooth transition between tessellation levels. It can be used for 

distance dependent and view-space dependent tessellation. 

TS input:
tessellation factors

TS output:
U V {W} coordinates

TS output:
topology list
(to primitive assembly to 
prepare for rasterization)

Note: Tessellator 
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fractional_odd_spacing also generates non-uniform segment sizes. Its range is 

from one to maximum tessellation level minus one and rounds up the tessellation value 

to the nearest odd integer values. Only one segment is drawn when the tessellation 

factor is between 0.0 and 1.0. Between tessellation value 1.0 and 3.0, two new vertices 

are generated at the position of the original vertices, which move into the middle of the 

line. fractional_even_spacing and fractional_odd_spacing is not 

drawn when the tessellation factor is smaller than 0.0. The primitive order can be 

changed between clockwise and counter clockwise. 

4.4. Tessellation Evaluation Shader 

 

Figure 14: Tessellation evaluation shader 

The TES is used to calculate the final vertex position of the generated vertex. The TES 

gets as input UV{W} coordinates from the tessellator. Additionally, tessellation factors, 

per patch input data and per control point data are provided from the TCS for the TES. 

In the TES tessellation options for the 

tessellater can be defined. Figure 15 shows 

the line of code, which has to be inserted 

before the main function of the TES shader. 

Parameters can be patch type (isolines, triangles, quads), spacing 

(equal_spacing, fractional_even_spacing, 

fractional_odd_spacing) or primitive ordering (cw, ccw). 

Built-in inputs are gl_TessCoord, gl_PatchVerticesIn and 

gl_PrimitiveID. UV{W} can be accessed with gl_TessCoord. 

gl_PatchVerticesIn is the vertex count of the patch and gl_PrimitiveID is 

TES input:
U V {W} coordinates

TES input:
[1..GL_MAX_PATCH_VERTICES] 
control points

tessellation factors

TES output:
one vertex

Tessellation 
Control Shader

Tessellator

Tessellation Evaluation 
Shader

layout(param1, param2, ...) in; 

Figure 15: Tessellation options definition 
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the index of the current patch. Tessellation factors can be accessed with 

gl_TessLevelOuter and gl_TessLevelInner. The built-in per vertex input 

from the TCS can be accessed with gl_in. The struct is except of gl_in the same as 

in Figure 12. The built in per vertex output is the same as for the vertex shader. 

4.5. Geometry Shader 

 

Figure 16: Geometry shader 

The geometry shader is executed either after the vertex shader or after the TES if 

tessellation is activated. It uses a single primitive as input and outputs zero or more 

primitives. Input and output primitives can be of different types. The geometry shader is 

optimized for small geometry expansions. Theoretically, the geometry shader can be 

used for tessellation, but this would not be very efficient. The main areas the geometry 

shader is useful are layered rendering, transform feedback and transformation of 

primitive types. With layered rendering it is possible to render one primitive to multiple 

images or render targets. In transform feedback the captured primitive from the vertex 

processing step can be saved to buffer. Vertex processing steps can include vertex 

shader and the tessellation stage. Transformation of primitives is a general use case for 

the geometry shader. One example for that is the expansion of lines to quads. 

Rasterizer

Tessellation Evaluation 
Shader

Geometry Shader

Stream Output

GS input:
vertices

GS output:
multiple vertices



Real-Time Hair Rendering  4. OpenGL Tessellation Rendering Pipeline 

 25 

 

 

Figure 17 shows how the input and output of the geometry shader is defined. For the 

input of the geometry shader only the input primitive type has to be defined at 

input_primitive. The available primitive types are points, lines and 

triangles. For the geometry output output_primitive and vert_count 

need to be set. Output primitives can be points, line_strip or 

triangle_strip. Additionally, the maximum number of vertices, which can be 

generated by the vertex shader, needs to be defined. This number of vertices is a 

hardware limited factor defined by MAX_GEOMETRY_OUTPUT_VERTICES, which 

has a minimum value of 256. 

OpenGL 4 has a new instancing 

feature available. The geometry 

shader can be executed multiple times 

per input primitive. Figure 18 shows 

the declaration of geometry instancing. With num_instances it needs to be defined 

how many times an input primitive will be executed. The maximum number is defined 

with MAX_GEOMETRY_SHADER_INVOCATIONS and is at least 32. 

Another feature of the geometry shader is layered rendering. Specific primitives can be 

send to different layers of a layered frame buffer. This functionality can be used for the 

creation of shadow maps. 

Built-in input is gl_PrimitiveIDIn and gl_InvocationID. 

gl_PrimitiveIDIn is the ID of the input primitive while gl_InvocationID is 

the current instance ID. gl_InvocationID can be different to 

gl_PrimitiveIDIn when instancing is activated. The built-in output is the same 

interface as for the vertex shader and TES. Another built-in output is 

gl_PrimitiveID. This output will be passed to the fragment shader and can be 

freely defined. For layered rendering two additional built-in output values can be set. 

gl_Layer defines the output layer and gl_ViewportIndex sets the output view 

port. 

// geometry shader input 
layout(input_primitive) in; 
 
// geometry shader output 
layout(output_primitive, max_vertices = vert_count) out; 

layout(invocations = num_instances) in; 

Figure 18: Geometry shader instancing 

Figure 17: Geometry shader input and output declaration 
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4.6. Fragment Shader 

Fragment Shader

Rasterizer

Framebuffer

Render Target/
Final Output

FS input:
texture coordinates, normals, …

FS output:
pixel colour

 

Figure 19: Fragment shader 

The fragment shader gets as input fragments, which are the result values of the 

rasterizer. The fragment size is related to a pixel area. Multiple fragments are possible 

per pixel. The fragment shader is executed once per fragment. Main purpose of the 

fragment shader are lighting calculations, texturing and screen space calculations. The 

fragment shader calculates the pixel colour values of the rendered image, which are in 

the end saved to the frame buffer. 

Built-in inputs are the 4D vector gl_FragCoord, the boolean value 

gl_FrontFacing and 2D vector gl_PointCoord. The location of a fragment in 

screen space is described with gl_FragCoord. The x value is the x position on the 

screen, the y value is the y position, the z value is the depth and the w value is 

1/W_clip, where W_clip is the interpolated w component of the clip-space vertex. 

If the primitive is from a front face or from a back face is located in 

gl_FrontFacing. gl_PointCoord describes the 2D location within in a point 
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primitive. The only point primitive in OpenGL is GL_POINTS. Points have square or 

circle form. The coordinates are in a range from 0 to 1, where (0, 0) is the upper right 

corner. 

OpenGL 4.0 specific inputs are sample attributes, the array gl_ClipDistance, and 

gl_PrimitiveID. When sample attributes are used the shader is forced to evaluate 

per-sample. The use of samples should be avoided and only used when absolutely 

needed. Sample attributes are gl_SampleID, gl_SamplePosition and 

gl_SampleMaskIn. gl_SampleID is the ID of the current sample. The 2D vector 

gl_SamplePosition supplies location of the current sample within a pixel area. 

The array gl_SampleMaskIn defines the sample mask for multi-sampled rendering 

and the array is as long as the supported sample count of OpenGL. 

gl_ClipDistance provides the interpolated clipping space values. The ID of the 

current primitive is stored in gl_PrimitiveID. If the geometry shader is enabled, 

gl_PrimitiveID is the value the geometry shader provided. 

OpenGL 4.3 expands the fragment shader built-in input with the layer number 

gl_Layer and the viewport number gl_ViewportIndex. 

Built-in outputs gl_FragDepth, 

gl_SampleMask and fragment 

colours. The fragment depth is 

stored in gl_FragDepth. If 

fragment depth is not set, the z value of gl_FragCoord is saved instead. The integer 

array gl_SampleMask defines sample masks for the fragment shader when 

performing multisampled rendering. Output buffers are the most important output of the 

fragment shader. The output is a series of colours, which are called fragment colours 

and stored as a framebuffer. A framebuffer is a collection of buffers and can be used for 

rendering. There are three ways to assign fragment buffers. The first possibility to 

declare a buffer as an in-shader specification with the layout modifier shown in Figure 

20. An alternative is a pre-link specification. The OpenGL function 

glBindFragDataLocation needs to be called with the arguments name of the 

program, the colour number to assign and the fragment shader name. The last possibility 

is to use auto assignment. However, auto assignment is not recommended because the 

assignment is arbitrary. 

4.7. Tessellation Primitive Isolines 

Isolines are the tessellation primitive, which can be used best for hair rendering. 

Because of this reason, this section describes how isolines are used within the 

layout(location = 3) out vec4 diffuseColor; 

Figure 20: In-shader specification 
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tessellation stage. Isolines have two parameters. The tessellation factor defines how 

many copies of the line are generated and the detail factor defines in how many parts a 

single line segment is separated. The tessellation factor is set in 

gl_TessLevelOuter[0] and the detail factor is set in 

gl_TessLevelOuter[1]. The maximum number of generated lines and line 

subdivision is 64. Different spacing values have no influence on the tessellation factor. 

The detail factor is influenced by spacing settings. 

The first example in Figure 21 shows isolines generation with equal_spacing 

setting. Detail tessellation factor 1.0 and detail factor 1.0 display the original input line 

segment without any subdivisions. Is the detail factor set to 2.0, two line segments are 

generated out of the input line segment. The tessellation factor defines how many copies 

of the line are rendered. In this example three line copies were generated. 

Isoline with tessellation factor 1.0 and detail factor 1.0

Isoline with tessellation factor 1.0 and detail factor 2.0

Isoline with tessellation factor 3.0 and detail factor 2.0

 

Figure 21: Isoline example equal_spacing 

Figure 22 demonstrates how different detail factor settings influence the position of the 

generated vertices inside the line segment with the spacing setting 

fractional_even_spacing. Note that the generated line has at least one 

subdivision. With fractional_even_spacing it is not possible to render the 

original line without subdivision. In this example, it is shown how the new generated 

vertices move from the middle to their final position with a detail factor between 2.0 

and 4.0. Is the detail tessellation level greater than 4.0, four new vertices are generated 

at the position of the two previous generated vertices. Two of these new generated 

vertices move left to their initial position and the other two move right to their previous 
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position. At a detail factor 6.0 the vertices are arrived at their final position. Here all line 

segments have the same size. 

Isoline with tessellation factor 1.0 and detail factor 2.0

Isoline with tessellation factor 1.0 and detail factor 3.0

Isoline with tessellation factor 1.0 and detail factor 4.0

Isoline with tessellation factor 1.0 and detail factor 5.0

Isoline with tessellation factor 1.0 and detail factor 6.0

 

Figure 22: Isoline example fractional_even_spacing 

The last spacing technique is fractional_odd_spacing. Here the input line can 

be displayed without subdivision. It is shown how two new vertices are generated and 

change their position between the detail factor 1.0 and 3.0. Is the detail factor greater 

than 3.0, two new vertices are generated at the position of the last two generated 

vertices. The new generated vertices as well as the previous two generated vertices 

move in opposite direction until detail factor 5.0 is reached, where all generated sub 

segments of the line have the same size. 
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Isoline with tessellation factor 1.0 and detail factor 1.0

Isoline with tessellation factor 1.0 and detail factor 2.0

Isoline with tessellation factor 1.0 and detail factor 3.0

Isoline with tessellation factor 1.0 and detail factor 4.0

Isoline with tessellation factor 1.0 and detail factor 5.0

 

Figure 23: Isoline example fractional_odd_spacing 
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5 .  I m p l e m e n t a t i o n  

In this section all implemented features for the hair rendering system are described. 

Main focus for this work was to implement a realistic looking hair rendering system 

with a huge number of hairs and at the same time provide a level of detail system to 

control the geometric detail as well as the needed processing power of the graphics card. 

Hair simulation is not a focus of this work and has therefore not been implemented. But 

the possibility for future implementation should still be provided. 

The implementation of the hair rendering system is mainly based on Tariq’s work 

described in section 2.1. Tariq’s implementation was chosen as a basis over AMD 

TressFX, which was described in section 2.3, because Tariq’s work showed the better 

results for hair rendering, uses a more realistic hair simulation, has a smaller amount of 

guide hairs and utilizes the tessellation pipeline. Especially, the tessellation pipeline 

allows more flexibility and control over the tessellated hairs for level of detail purposes. 

The number of generated hairs, the subdivision of each hair segment as well as the 

width of the hair can be manipulated per TCS call, which is called once per hair 

segment of the guide hair. Tariq also implemented two different hair interpolation 

techniques, which allow to show different hair styles. Additionally, there is support of 

curly hair, random deviations and thinning. Overall, Tariq’s implementation allows 

more flexibility over the final hair style with less guide hairs, which allows lower 

memory consumption and less data has to be transferred from the CPU to the GPU. 

AMD TressFX on the other side is more performance optimized, which would free up 

calculation power for other algorithms of our character pipeline. However, the main 

problem with AMD TressFX is that artefacts appear when the hair style takes up more 

than the whole screen. Because our characters are rendered at a close up view, this is a 

visual bug, which is unthinkable for our implementation. Therefore the only way to use 

AMD TressFX is without the linked list ordering for hair geometry, which is the cause 

of the visual artefacts. 

Another reason to use an implementation that utilizes the tessellation pipeline is because 

it also can be used to render face and cloth geometry more efficiently and with less 

memory consumption. It is possible to implement a view-dependent level of detail, 

which could be useful for the future of our character rendering pipeline. The tessellation 

pipeline would also allow to decide how much geometry detail is generated per frame. 

Therefore a version of our characters with less geometric detail would be possible. We 

would also have the possibility to have a continuous transition between low poly 

geometry and high detail geometry. 

In the following subsections it is described how input data for hair rendering is 

represented and used within Frapper. Afterwards, the implementation of hair strand 
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interpolations techniques single strand, multi strand and the combination of both are 

explained. In the next subsection it is evaluated how different hair guide sizes can be 

used with single strand and multi strand interpolation, where multi strand interpolation 

proves to be more challenging to get right. In the following subsections random 

deviations, curly hair and thinning are explained. At the end of the implementation 

paragraph, level of detail techniques as well as the used hair shading are shown. 

5.1. Input Data 

As input data of the hair guide hairs and a scalp mesh is needed. Guide hairs are a small 

number of hairs, which define the form and density of the hair style. These guide hairs 

can also be used for hair simulation. Each guide hair is saved as a separate submesh 

within the Ogre mesh file. A guide hair is a line_strip, which includes vertex 

buffer of all guide hair vertices. These vertices define the form of the hair. First vertex 

is the root vertex and the last vertex of the line_strip is the tip vertex of the hair. 

Two neighbouring vertices build a hair segment. 

The scalp mesh is very important for multi strand interpolation to be able to pick the 

neighbouring guide hairs. The scalp mesh is a mesh, which describes the scalp of the 

character. Each vertex of the scalp mesh represents a root vertex of a hair guide. Best 

practice is to place the root vertex of a guide hair at the same position as a vertex of the 

scalp mesh. If that is not the case a distance variable was added to the system, which 

allows a small distance between root vertex of the hair and scalp mesh vertex. With that 

it is possible to use input data even when scalp mesh vertices and root vertices of guide 

hairs are not exactly the same, which can simplify the work of the hair artist. 

  

Figure 24: Guide hairs and scalp mesh (left), guide hairs and scalp mesh with rendered hair (right) 

These guide hairs and the scalp mesh can be created with Maxon Cinema 4D, Autodesk 

Maya or Autodesk 3DS Max and exported with the Ogre mesh exporter. For our 

character Sara the hair style was created by Kai Götz within Cinema4D. First, a scalp 

mesh needs to be modelled. Afterwards, all faces of the scalp mesh need to be selected 
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to generate hair splines at the position of the scalp mesh vertices. Thereafter, the form of 

the splines can be modified. For the export all guide hairs need to be saved in a separate 

mesh and the amount of guide hair segments per guide hair need to be defined. The 

lower the number of hair guide segments, the faster will be the rendering of the guide 

hairs. However, the geometry detail and control over the final form of the hair will be 

less. The data has to be exported first in Cinema 4D as an FBX file. This file needs to be 

loaded into Autodesk Maya, where hair and scalp mesh can be exported with the Maya 

Ogre exporter. Description about how to design and export hair styles have been 

supported by Kai Götz [Götz 2014b, 2014a]. 

This generated guide hair is read in at start up. For every vertex of the scalp mesh a 

corresponding guide hair is searched. When the guide hair is found, all vertices of the 

guide hair are saved within a guide hair position texture, which can be accessed at 

run-time by the TCS. Additional information that need to be saved to the guide hair 

vertices are the size of the guide hair as well as the distance to the tip of the current hair 

guide vertex. This additional data has to be saved to be able to support different hair 

sizes. In the end, the index buffer of the scalp mesh can be used to select the right guide 

hairs for multi strand interpolation. 

5.2. Single Strand Interpolation 

The idea of single strand interpolation is to use a single hair guide as input for the 

interpolation of generated hair strands. Two different techniques were tried out for 

single strand interpolation. 

The first implementation is based on the Archimedean spiral algorithm [Rutter 2000]. 

For the implementation the parametric equation was used, where: 

𝑥 = 𝑎 𝜑 cos(𝜑), 𝑦 = 𝑎 𝜑 sin(𝜑)            (𝜑 ≥ 0) 

For the implementation the glsl code in Figure 25 was used inside the TES for the 

position calculation of the generated hair strand vertices. 

// Parameters for the wisp shape 
float r1 = g_rootRadius + g_tipRadius * gl_TessCoord.x; 
float f1 = gl_TessCoord.y * 20 + 1; 
 
// Order generated hair strands as Archimedean spiral 
vec4 finalPosition = vec4( position.x + f1 * cos(f1) * r1, 

position.y, 
position.z + f1 * sin(f1) * r1, 1.0); 

Figure 25: Archimedean spiral implementation glsl 

With g_rootRadius and g_tipRadius can be controlled how hair strands are 

tapered in direction of the hair tip. gl_TessCoord.x gives the position within the 

hair segment while gl_TessCoord.y defines, which generated hair strand is called 
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for the current invocation of the TES. The calculated values are used to offset the 

previous position of the hair in x and z direction. Results are shown in Figure 26. For 

the debug view on the left this implementation gives nice results. However with shading 

the pattern of the spiral is visible. Additionally, offset in x and z direction is not the 

perfect solution especially for hair strands at the side of the head. 

  

Figure 26: Results Archimedean spiral 

 

Figure 27: Rendering of coordinate frames for Fermi Hair Demo [NVIDIA 2010b] 

Another approach that was tried out are random circular coordinates. Idea is to offset 

the generated hair with random values along their coordinate frames. One coordinate 

frame are three vectors, which define the plane the hair is offset at each vertex of the 

guide strand. Figure 27 illustrates how this three vectors, which are perpendicular to 

each other, look like for every vertex of the guide hair strand. One vector is calculated 
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according to the tangent along the guide hair segment. This vector is used to calculate 

the other two vectors. 

Random circular coordinates are calculated with Box-Muller Transformation, which 

guarantees a normal distribution for 

𝑋1 =  √−2 log (𝑈1) cos(2𝜋𝑈2) 

𝑋2 =  √−2 log (𝑈1) sin(2𝜋𝑈2) 

when 𝑈1 and 𝑈2 are independently distributed within the range from 0.0 to 1.0 [Gentle 

2003]. The offset result is saved within a texture and accessed in the TES at rendering 

time. 

//create the new position for the hair clump vertex 
float radius =  g_clumpWidth * ( g_rootRadius*(1-lengthToRoot) +  

g_tipRadius*lengthToRoot ); 
vec4 finalPosition; 
finalPosition.xyz =  
 position.xyz +  
 yAxisCF * clumpCoordinates.x*radius +  
 zAxisCF * clumpCoordinates.y*radius; 

Figure 28: Random circular coordinates glsl implementation 

The glsl code to use the random circular coordinates is shown in Figure 28. Variables, 

which influence the form of the generated hairs are g_clumpWidth, 

g_rootRadius and g_tipRadius. With g_climpWidth, the overall width of 

the clumped hair is described. The maximum radius of the root and the maximum tip 

radius can be set with g_rootRadius and g_tipRadius. 

  

Figure 29: Result random circular coordinates 

Result is a random distribution pattern, where no form is visible with shading. This 

single strand interpolation technique is good to render clump based hair. It is easy to 

implement for different hair sizes because interpolation pattern is only dependent on 

one hair strand and one size. Another advantage of single strand rendering is its 

performance. With single strand rendering less texture fetches and less calculations 
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need to be performed compared to multi strand rendering. However, single strand 

rendering alone does not give good enough visual results to render a hair style. It needs 

to be combined with another hair interpolation technique for better results. 

5.3. Multi Strand Interpolation 

Multi strand interpolation uses three guide hairs for interpolation. Each TCS invocation 

uses three vertices for input. These can be the three root vertices of the guide hairs or 

three other vertices with the same distance to the root. These three vertices build 

together a triangle on which a new generated vertex is placed dependent on random 

generated barycentric coordinates. 

To make this operation clearer a simple example is used with three hair guides, which 

all have a vertex count of three and therefore two segments. For these three guide hairs 

the TCS is called three times to read in the right vertex data on which barycentric 

interpolation is performed. One call is for the root vertices, one call for the vertices in 

the middle and another call for the tip vertices. After the vertices are read in the TCS, 

the hair segment is tessellated dependent on tessellation and detail factor. In the TES the 

calculation of the final vertex position for multi strand rendering takes place. For the 

simplest case with tessellation factor one and detail tessellation factor one the TES is 

called once for the root vertices, once for the middle vertices and once for the tip 

vertices to calculate the final vertex position. Result is one generated hair, which form is 

defined by the three input guide hairs. If the tessellation factor is increased more hairs 

will be generated, which means more invocations for the TES. Different barycentric 

coordinate values need to be used for each invocation of the TES with the same input 

vertices. Figure 30 shows the result of the simple example. 

 

Figure 30: Multi strand interpolation simple example 
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The barycentric coordinates are calculated once at start up. Two random values between 

0.0 and 1.0 are stored into a variable for the first two barycentric coordinates. If the sum 

of these values is greater than 1.0, the new first barycentric value is the subtraction of 

the old first barycentric value from 1.0 and the new second barycentric value is the 

subtraction of the old second barycentric value from 1.0. In the end the first two 

barycentric values are subtracted from 1.0 to calculate the third barycentric coordinate 

value. 

coord1 = Ogre::Math::RangeRandom(0.0, 1.0); 
coord2 = Ogre::Math::RangeRandom(0.0, 1.0); 
 
// sum has to be smaller than one to be useful for barycentric coordinates 
if(coord1 + coord2 > 1) 
{ 
 coord1 = 1.0 - coord1; 
 coord2 = 1.0 - coord2; 
} 
 
pStrandCoordinatesFloat[writePosition++] = coord1; 
pStrandCoordinatesFloat[writePosition++] = coord2; 
pStrandCoordinatesFloat[writePosition++] = 1.0f - coord1 - coord2; 

Figure 31: Calculation of a random barycentric value 

One advantage of multi strand interpolation is that the generated hair covers the whole 

scalp of the character. The left picture of Figure 32 shows how new generated guide 

hairs are placed on top of the scalp mesh (blue quad). Additionally, the form of the 

generated hairs is a mix out of the form of the three guide hairs, which lets every 

generated hair look slightly different. The nearer a hair is to a guide hair, the more it 

will look like this hair. Hairs, which are placed in the middle of the triangle are a 

mixture of all three guide hairs. 

  

Figure 32: Results multi strand interpolation 

There are still two problems with multi strand interpolation. It is not possible to render 

separated wisps and parting in the hair. First try to solve this problem, was not to render 

hair segments if the distance between guide hair vertices or the angle between guide 

hairs was too big. Unfortunately, this experiment did not give the wanted results. Figure 
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33 shows the results of this attempt. There is a big bold area, were the parting should be 

and the hair at the position of the separated wisp is just cut off. 

  

Figure 33: Attempt to fix separate wisp and parting problem 

5.4. Combination of Single Strand and Multi Strand Interpolation 

The second attempt to fix the separate wisp and parting problem was based on how 

Tariq implemented collision handling for multi strand interpolation. Her target was not 

to have to do collision calculation for the generated hairs. But the multi strand 

tessellation hair always goes through a collision object when this object is between the 

used guide hairs. The idea of Tariq was to switch to single strand rendering when a 

collision of the guide hairs with a collision obstacle occurred. Switching between guide 

strands is also implemented for this solution. Instead of checking for collisions it is 

checked how far are the guide strand separated from each other and how big the angle 

between their tangents for their current hair segment are. The maximum distance and 

the maximum angle are parameters, which can be changed to be able to get the wanted 

result for the hair style. Figure 34 shows the result from two different perspectives. The 

separate wisp problem is solved. For the parting of the hair it shows a better result than 

the previous implementation. However, perfect parting cannot be achieved with this 

approach. A solution would be to separate the scalp mesh into two parts, with additional 

guide hairs for the parting area. This would allow to render a parting, with a defined 

distance, dependent on the distance of the two scalp meshes. 
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Figure 34: Result of single strand and multi strand interpolation combined 

5.5. Handling Different Hair Guide Sizes 

Target was to be able to have the possibility of different number of hair segments per 

hair guide instead of having the same number of hair segments for every hair guide. 

Since the number of hair segments is directly connected with the performance of hair 

rendering and also the memory, which needs to be used to save the input data, reducing 

the number of hair segments for short hair guides and at the same time provide enough 

hair segments for long hair is reasonable. 

As mentioned in section 5.2 different hair guide sizes can easily be handled with single 

strand interpolation. Only the hair strand size as well as the current position of the hair 

strand vertex relative to the hair tip needs to be saved. Unfortunately, for multi strand 

rendering handling different hair strand sizes is not that trivial because three hair guides 

are used as input. When those three hair guides do not have the same segment number 

and therefore not the same vertex number, it needs to be handled, which vertices of the 

hair guides are used for interpolation. 

It was tried to handle this problem with three different approaches. The first idea was to 

use the vertex number of the longest guide strand for the number of invocations for the 

TCS. It should be interpolated the same way as with uniform guide hair sizes, until the 

tip vertex of the shortest guide strand. This would mean that all operation stay the same 

until the tip of the shortest guide strand is reached. For the following interpolations the 

tip vertex of the shortest guide hair is used. When tip of the next guide hair is reached, 

the tip vertex of this guide hair is used for the following interpolations until the tip of 

the last guide hair is reached. This iteration did not work well because hair segments are 

drawn into each other when the tip of one or two guide hairs is used for multiple multi 

strand interpolations. 
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Figure 35: Different hair sizes first iteration 

In the second iteration the shortest guide strand vertex count was used for the number of 

invocations of the TCS. Vertices were used in the same way until the tip of the shortest 

guide strand was reached. This means that only the same number of vertices of the 

longer guide strands is used for interpolation as the number of vertices of the shortest 

guide strand. The rest of the vertices are ignored. The result hairs are drawn correctly. 

However, this approach also causes a choppy transition from long to short guide 

strands. It would be better if the transition between different sizes is smooth. Another 

problem with this approach is that geometric detail of longer guide strands is lost. 

    

Figure 36: Different hair sizes second iteration 

One problem is that the number of vertices that are used for multi strand interpolation 

has to be the same for every guide strand. With the first iteration it was tried to use all 

available vertices. The second iteration on the other hand ignored vertices. The third 

iteration is a middle ground between the first and second iteration. The same amount of 

vertices will be ignored in iteration three as in iteration two. However, the selected 

vertices, which are used for interpolation are different. It will always be used the root 

and the tip vertex. Which vertices are selected in-between is dependent on the vertex 

buffer size of the smallest guide hair. A delta step value is calculated to retrieve the next 

used vertex. 
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Figure 37: Different hair sizes third iteration 

With the third iteration the length of the guide hairs is better represented and it allows a 

smoother transition from short to long hairs. However, there is still some geometry 

information lost. This is especially visible if the vertex count difference of the guide 

hairs is big. If the vertex number of the guide hairs only differs in a small number, the 

missing of geometry detail is only barely visible. 

5.6. Expand Lines into Camera Facing Quads 

After the generation of hair within the tessellation stage, the geometry shader is used to 

expand the isolines into camera facing quads. 

The geometry shader is designed for small geometry expansion and therefore efficient 

for this operation. The reason to expand isolines into camera facing quads is to be able 

to show hair, which changes is width when it gets nearer to the tip of the hair. This 

functionality would not be possible with isolines because the width of isolines can only 

be changed per draw call. Another reason is to be able to change the width of hair 

dependent on the number of hairs that are generated. If less hairs are generated the 

width of hair needs to be thicker. With this functionality level of detail for hair can be 

implemented, which shows less hairs with a thicker width. 

The geometry shader gets as input the two vertices of a line segment. First, the eye 

vector and the tangent of the line segment is calculated. The normalized cross-product 

of eye vector and tangent results into the offset vector, which is used to calculate the 

four new vertices of the camera facing quad. 
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vec3 tangent = pos2.xyz - pos1.xyz; 
tangent = normalize(tangent); 
 
vec3 eyeVec = (g_mInverseWorldMatrix * g_CameraPosition).xyz - pos1.xyz; 
vec3 sideVec = normalize(cross(eyeVec, tangent)); 
 
vec3 width1 = sideVec * strandWidth[0]; 
vec3 width2 = sideVec * strandWidth[1]; 
 
// Offset positions to for drawing triangles in world space 
vec4 pos11 = vec4( pos1.xyz + width1, 1 ); 
vec4 pos12 = vec4( pos1.xyz - width1, 1 ); 
 
vec4 pos21 = vec4( pos2.xyz + width2, 1 ); 
vec4 pos22 = vec4( pos2.xyz - width2, 1 ); 

Figure 38: Expansion of isolines into camera facing quads 

5.7. Hair Form 

With camera facing quads the form of the hair can be adjusted with two width values 

per segment. These two width values have to be calculated inside the TES per hair 

vertex and will be send to the geometry shader for the geometric expansion. For the 

tapering of the hair a simple solution was used, which gives a good result for thin hair 

and provides the option to define, where tapering of the hair begins. 

          

Figure 39: Hair strand tapering (1, 2, 3 and 6 segments) 

Result of this implementation is a hair form, which has the same width from root 

position to the position, where tapering is defined to begin. From there a linear 

interpolation is used, which reduces the width until it has reached the tip of the hair. At 

the tip of the hair the width of the hair is 0. Figure 39 shows different hair tapering 

settings for a hair strand that has the same base width. 
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5.8. Hair Strand Tessellation 

Hair strand tessellation is about how a single hair strand can be tessellated to get a 

smooth curve at the end. The detail tessellation factor of the OpenGL tessellation stage 

is needed for this operation. Tariq had a different approach for her hair strand 

tessellation. She made it in a pre-calculation step within the geometry shader and wrote 

the result to a buffer, which was used in the following render passes to render the 

tessellated hair on the screen. 

Our implementation of the hair rendering is done in a single draw call, which has the 

advantage that for every single hair segment of the guide hair a different detail 

tessellation factor can be applied. This is a crucial functionality to support dynamic 

view dependent level of detail, which also is dependent on the shape of the hair strand. 

Important for the used algorithm was that it works with a small amount of input vertices 

on a per segment basis. Best solution for hair strand tessellation would be an algorithm 

that just needs the two vertices of a hair segment. Two different techniques for hair 

strand tessellation were implemented and evaluated. 

5.8.1. Hermite Curve Interpolation 

The first implementation was hermite curve interpolation [Pipenbrinck 2013]. For the 

calculation of the result position the starting point 𝑃0, the tangent 𝑇0 at the starting 

point, the end point 𝑃1 and the tangent 𝑇1 at the end point are needed. For hermite 

curves the tangents define the smoothness or tightness of the curve. The variable 𝑡 is 

defined between 0 and 1. It gives information about the current position in the line 

segment. If 𝑡 is 0 it is the start position. If 𝑡 is 1 it is the end position. Each result 

position can be calculated with the following equation: 

𝐻(𝑡) = (2𝑡3 − 3𝑡2 + 1)𝑃0 + (𝑡3 − 2𝑡2 + 𝑡)𝑇0 + (−2𝑡3 + 3𝑡2)𝑃1 + (𝑡3 − 𝑡2)𝑇1 

The hermite curve equation is executed in the TES. The input variable 

gl_TessCoord.x exactly provides the information needed for the variable 𝑡. The 

vertices for the start point and the end point are given. However, the tangents need to be 

calculated at start up out of the hair guide vertices. For the calculation of the tangents 

the formula for Cardinal splines can be used. 

𝑇𝑖 = 𝑎 ∗ (𝑃𝑖+1 − 𝑃𝑖−1) 

Result is the tangent 𝑇𝑖 at the vertex 𝑃𝑖, where 𝑃𝑖+1 is the next vertex and 𝑃𝑖−1 is the 

previous vertex. In this formula, 𝑎 defines the tightness of the resulting curve. For the 

special case, which is called Catmull-Rom spline, 𝑎 is set to 0.5. This results into 

following equation. 

𝑇𝑖 = 0.5 ∗ (𝑃𝑖+1 − 𝑃𝑖−1) 
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Catmull-Rom splines were used for the implementation. For the calculation of the 

tangents of the hair guides vertices, two special cases needed to be handled for the root 

vertex and the tip vertex. The root vertex has no previous vertex. Instead the root vertex 

is used for the previous vertex. For the tip tangent calculation the tip vertex is used 

instead of the next vertex. The calculated tangents are stored in an additional texture and 

read in the same way as the positions in the TCS. 

          

Figure 40: Hermite curve interpolation with detail tessellation factor 1, 2, 16 and 64 

Result is a smooth curve, which goes directly through all control points of the hair 

guide. The problem with the calculation of hermite curves is that there is no 

documented way how interpolated tangents can be calculated, which are mandatory for 

the right hair shading calculation in the fragment shader. It is also not possible to 

calculate the right tangents within the geometry shader because there is only access to 

the vertices of the current generated line segment. An alternative approach needed to be 

used, which also allows to calculate interpolated tangents for tessellated hair strands. 
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5.8.2. Uniform Cubic B-Splines 

Tariq used in her implementation uniform cubic b-splines, where she also interpolated 

the tangents. Uniform cubic b-splines use four vertices as input. The following equation 

shows how uniform cubic b-splines are calculated [Hamilton 2014]. 

𝑃(𝑢) =
1

6
[𝑢3 𝑢2 𝑢 1] [

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

] [

𝑃𝑖

𝑃𝑖+1

𝑃𝑖+2

𝑃𝑖+3

] 

The variable 𝑢 is again the gl_TessCoord.x, which is defined between 0 and 1. The 

main difference is that as input four vertices are needed. These vertices are the control 

points of the generated curve. 𝑃𝑖 is the previous vertex, 𝑃𝑖+1 is the start vertex, 𝑃𝑖+2 is 

the end vertex and 𝑃𝑖+3 is the next vertex. The root segment of the guide hair as well as 

the last segment of the guide hair needs to be handled in a different way. For the root 

segment, the previous vertex 𝑃𝑖 is the same as the start vertex 𝑃𝑖+1. For the tip segment 

the next vertex 𝑃𝑖+3 is the same as the end vertex 𝑃𝑖+2. For tangent calculation the 

following equation is used. 

𝑇(𝑢) = [𝑢2 𝑢 1] [
0.5 −1.0 0.5

−1.0 1.0 0.0
0.5 0.5 0.0

] [

𝑇𝑖

𝑇𝑖+1

𝑇𝑖+2

] 

The three tangents 𝑇𝑖, 𝑇𝑖+1, and 𝑇𝑖+2 can be calculated with: 

𝑇𝑖 = 𝑃𝑖+1 − 𝑃𝑖 

𝑇𝑖+1 = 𝑃𝑖+2 − 𝑃𝑖+1 

𝑇𝑖+2 = 𝑃𝑖+3 − 𝑃𝑖+2 

The matrix calculation form is efficient to calculate on the GPU. No pre-calculation of 

tangents is needed. Tangents can be calculated inside the TES, which is especially 

important for multi strand interpolation because the hair segment is an interpolation of 

three hair segments and the tangent will be different dependent on the used barycentric 

coordinates. The results are smooth curves and smooth tessellated tangents. 
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Figure 41: Uniform cubic b-spline interpolation with tessellation factor 1, 2, 16 and 32 

One problem is that uniform cubic b-splines cut off a small part of the start and the end 

of the hair strand. The end parts do not really matter and the root part is so small that it 

can barely be recognised when rendering hair with thousands of strands for a hair style. 

   

Figure 42: Uniform cubic b-splines start and end segment 
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5.9. Curly Hair 

Realistic curly hair is hard to render. Guide hairs with a huge number of vertices are 

needed to be able to render curly hair. In real-time there are limited resources and 

number of guide hair vertices should be as small as possible. However, there is one way 

to fake curly hair. The idea is to offset the calculated hair vertex in x and z direction 

dependent on a generated curl deviations texture. 

int numCVs = 13; 
float sd = 1.5f; 
 
int numSegments = numCVs - 3; 
int numVerticesPerSegment = ceil( ((m_NumberMaxOfHairSegments+1)*64) / 
     float(numSegments) ); 
float uStep = 1.0/numVerticesPerSegment; 
Ogre::Vector2* CVs = new Ogre::Vector2[numCVs]; 
CVs[0] = Ogre::Vector2(0,0); CVs[1] = Ogre::Vector2(0,0); 
CVs[2] = Ogre::Vector2(0,0); CVs[3] = Ogre::Vector2(0,0); 
float x,y; int index = 0; int lastIndex = 0; 
 
Ogre::Matrix4 basisMatrix = Ogre::Matrix4 
( 
 -1/6.0f, 3/6.0f, -3/6.0f, 1/6.0f, 
 3/6.0f, -6/6.0f, 0,  4/6.0f, 
 -3/6.0f, 3/6.0f, 3/6.0f, 1/6.0f, 
 1/6.0f, 0,  0,  0 
); 
 
for (int i = 0; i < numberOfGuideHairs; i++)  
{ 
 //create the random CVs 
 for(int j=4;j<numCVs;j++) 
 { 
  BoxMullerTransform(x,y); 
  x *= sd; 
  y *= sd;  
  CVs[j] = Ogre::Vector2(x,y); 
 } 
 //create the points 
 for(int s=0;s<numSegments;s++) 
 { 
  for(float u=0;u<1.0;u+=uStep) 
  { 
   Ogre::Vector4 basis; 
    
   basis = basisMatrix * Ogre::Vector4(u*u*u, u*u, u, 1); 
   Ogre::Vector2 position = Ogre::Vector2(0,0); 
   for (int c = 0; c < 4; ++c)  
    position += basis[c] * CVs[s+c]; 
   // save position to texture/buffer 
  } 
 } 
 lastIndex = index; 
} 

Figure 43: Creation of curl deviations for curly hair 

The texture is generated at start up on the CPU. Adjustable input variables are the 

number for control vertices numCVs and the deviation scale sd. The higher the number 
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of hair segments per guide strand, the higher should be the number of control vertices 

and the deviation scale. Dependent on numCVs random control vertices are generated 

using Box-Muller Transformation. Notice that the first four control vertices are always 

set to 0. This has the reason that vertices near the root of the hair are not influenced to 

make sure that the hair still has the original position near the scalp. The number of 

generated curl deviations per segment is dependent on the maximum tessellation factor 

and the highest number of guide hair segments. For curl deviation, calculation per sub 

segment a basis matrix is calculated and multiplied with four different control vertices. 

These calculations are executed for each hair guide positions to ensure different curl 

deviations per hair strand. For multi strand interpolation the index count of the scalp 

mesh divided by three is used, instead of the hair guide count. 

          

Figure 44: Curly hair results with no curl offset, low curl offset, increased curl offset and increased curl 

offset with hair strand tessellation 

The result is more curvy hair, which is slightly offset in x and z direction. A low curl 

offset is doable with small amount of subdivisions. The higher the curly hair offset, the 

more subdivisions of a hair segment is needed to still provide a smooth curve. 

Therefore, good quality curly hair is still processing intensive to render on the GPU. 

5.10.  Thinning 

Especially with single strand interpolation all hairs have the same overall length as the 

corresponding guide hair. In multi strand interpolation the length of the hair is 

dependent on the three input guide hairs. For some hair styles, hairs with the same 

length can be the wished result. However, there are also hair styles, where hairs are 

thinned. The result are hairs, which have a slightly different size. Hair dresser often use 

this to make thick hair look thinner. Thinning is the functionality to support this feature 
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for a hair style. The variable g_thinning, which is defined between 0.0 and 1.0 is 

used to control the amount of thinning for the hair. 

// calculate data and write to texture and array 
m_strandLength = new float[m_numStrandVariables]; 
 
float minLength = 0.2f; 
 
for (int i = 0; i < m_numStrandVariables; ++i) 
{ 
 m_strandLength[i] = Ogre::Math::RangeRandom(0.0, 1.0) * (1-minLength) + 
    minLength; 
 pFloat[writePos++] = m_strandLength[i]; 
} 

Figure 45: Random strand length generation 

At start up a random generated texture is created with a predefined number of variables. 

1024 random values have proven to be enough for this implementation. First the 

minimum length is defined. Afterwards the random generated length values are saved 

into a texture. 

//thinning the hair lengths 
float strandLengthPosition = float(iMasterStrand & (g_numStrandVariables-1)) /  
      g_numStrandVariables; 
float inLengthFrac = texture( TexStrandLength , strandLengthPosition ).r; 
// percentage of max length 
float maxLength = 1.0-g_thinning + g_thinning*inLengthFrac; 
 
float cutOfLength = hs_currentNumOfGuideHairSegments –  
 (maxLength * hs_currentNumOfGuideHairSegments); 
 
// add LOD to strand width 
float tmpStrandWidth = g_strandWidth * g_strandWidthLOD;  
// Make hair strand thinner from defined position to top 
if( lengthToRoot > (maxLength * hs_currentNumOfGuideHairSegments) ) 
{ 
 strandWidth = 0.0; 
} 
else if( (hs_strandPosition - gl_TessCoord.x) <=  
   (g_strandTaperingStart+cutOfLength) ) 
{ 
 float ignoredPositions = hs_currentNumOfGuideHairSegments –  
  (g_strandTaperingStart+cutOfLength); 
 strandWidth = tmpStrandWidth *  
  (maxLength - ( ( hs_currentNumOfGuideHairSegments –  
  ignoredPositions - hs_strandPosition + gl_TessCoord.x ) /  
  (hs_currentNumOfGuideHairSegments - ignoredPositions) ) ); 
} 
else 
{ 
 strandWidth = tmpStrandWidth; 
} 

Figure 46: Thinning in TES and adjustment of hair tapering 

In the TES the calculated, predefined strand length is read in and applied dependent on 

g_thinning. The maximum length of the current hair strand is calculated. Dependent 
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on the maximum length the tapering of the hair is adjusted. If the current length to the 

root vertex is greater than the maximum length, the width of the hair strand is set to 0. 

 

 

 

Figure 47: Thinning with value 0.0, 0.5 and 1.0 (top to bottom) 
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5.11. Random Deviations 

The look of the hair styles, the current hair rendering system generates, is too uniform 

and too predictable. All hairs strands are perfectly aligned either clamp based with 

single strand interpolation or evenly distributed with multi strand interpolation. All the 

hairs strands look like as they were perfectly styled. Real human hair behaves 

differently. It can often be observed that some hair strands are separated from the other 

hairs strands. Especially at the edges of the hair style, single hair strands are visible, 

which have a different form than the neighbouring hair strands. It almost never happens 

that every hair follows the same form. There are very often a small amount of hairs that 

have another form. Random deviations is an attempt to bring randomness into a hair 

style to get a more realistic result, which can be better compared with a real-world hair 

styles. 

The implementation of random deviations is similar to the creation of curly hairs. 

Adjustable input variables are the number for control vertices numCVs, the global 

deviation scale sdScale and a deviation scale sd, which is set dependent on the 

wished deviation of a hair strand. The main difference for random deviations compared 

to curly hair is the added randomness. The deviation scale sd chances dependent on a 

random value. With a probability of 60%, hairs are not modified at all. Only 5% of the 

hair have high sd value, which leads to stray hair. 15% of hair are lesser stray hair. For 

the remaining 20% small random deviations are only applied near the tips. For the offset 

of the tips the thinning scale m_thinning is used. The different sd values are applied 

for the control vertices creation. The offset position calculations in x and z direction are 

calculated the same way as for curly hair and saved into a texture. For the hair strands 

that were not modified, a zero vector is saved to the texture. 
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float sdScale = 1.0f; 
 
for (int i = 0; i < m_numStrandVariables; i++)  
{ 
 float randomChoice = Ogre::Math::RangeRandom(0.0, 1.0); 
 if(randomChoice>0.6) 
 { 
  float maxLength = (1.0-m_thinning) + 

m_thinning*m_strandLength[i%m_numStrandVariables]; 
  int maxCV = floor(maxLength*numSegments)+ 2; 
 
  //create the random CVs 
  for(int j=2;j<numCVs;j++) 
  { 
   float sd; 
 
   if(randomChoice > 0.95)//make some very stray hair 
    sd = 1.2f; 
   else if(randomChoice > 0.8) 
    sd = 0.8f; 
   else // some lesser stray hair (more deviant near tip) 
   { 
    if(maxLength>((numCVs-1)/numCVs) && j==numCVs-1) 
     sd = 100.0f; 
    else if(j>=maxCV) 
     sd = 4.0f; 
    else  
     sd = 0.12f; 
   } 
 
   BoxMullerTransform(x,y); 
   x *= sd * sdScale; 
   y *= sd * sdScale;  
   CVs[j] = Ogre::Vector2(x,y); 
  } 
 
  //create the points 
  for(int s=0;s<numSegments;s++) 
  { 
   for(float u=0;u<1.0;u+=uStep) 
   { 
    Ogre::Vector4 basis; 
    basis = basisMatrix *  
      Ogre::Vector4(u * u * u, u * u, u, 1); 
    Ogre::Vector2 position = Ogre::Vector2(0,0); 
    for (int c = 0; c < 4; ++c)  
     position += basis[c] * CVs[s+c]; 
    // save position to texture/buffer 
   } 
  } 
 } 
 else 
  // no deviations, save 0 position to texture 
} 

Figure 48: Creation of random deviations 

Result is added randomness to the hair, which makes the overall hair style more realistic 

and believable. Figure 49 shows three different deviations settings of one hair style to 

demonstrate the difference between hair without deviations and hair with deviations 

enabled. 
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Figure 49: Hair style (full hair and zoomed) with random deviation scale 0, 0.025 and 0.05 left to right 

5.12. Level of Detail 

LOD for the hair rendering system is an important part to adjust the amount of 

generated hair and smoothness of the hair dependent on the available computing 

resources of the GPU. LOD is often done distance dependent. For the research project it 

made no sense to implement a distance dependent LOD because the camera distance 

never changes. Instead a LOD slider was implemented, which has a value between 0.0 

and 2.0. The interval from 0.0 to 1.0 adjusts the number of generated guide strands and 

at the same time decreases the width of single guide strand with increased value. Is the 

value between 1.0 and 2.0, the detail tessellation factor is increased, which improves the 

smoothness of the hair. This LOD slider is also useful for the research project to be able 

to render less detailed hair with a thicker width and therefore get a more abstract 

representation of the hair style. 
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Figure 50: Hair with LOD slider set to 0.1, 0.5 and 1.0 

Result is a simple modification of the tessellation factors dependent on a slider value. 

This works perfectly fine for the amount of generated hair. However, the amount of 

needed processing power increases dramatically with increased detail tessellation factor. 

The problem here is that all hair segments are subdivided in the same way even if the 

hair is straight, where subdivision of hair does not give additional geometric detail. 

There is a potential to save computing resources, without the loss of geometric detail. 

5.12.1. Screen Space Adaptive Level of Detail 

The idea of screen space adaptive level of detail (SSALOD) is to have a dynamic detail 

tessellation factor for each hair strand segment, which is dependent on the shape of the 

hair and the size of a hair segment in screen space. The calculation of the detail factor in 

the TCS is done once per hair segment. The two vertices of the hair segment are 

transformed into screen-space to get the size of the hair segment. According to this size 

the detail tessellation factor is calculated. Additionally, the form of the hair strand is 

taken into account for the calculation of the detail factor. As pre-calculation step, the 

angle between the previous segment and the current segment, as well as the angle 

between current segment and the next segment is calculated. The larger angle is then 

used in the shader to influence the final detail factor. 

Configuration options for SSALOD are the screen segment size of a hair strand 

segment, the meaningful bend angle and the maximum bend angle. The meaningful 

bend angle describes the angle above which detail tessellation should be applied. Is the 

angle between hair segments smaller than the meaningful bend angle no subdivision 

should be performed. The maximum bend angle defines the angle between hair 

segments, where maximum subdivisions of hair segments should be performed. All 

three options can be modified dependent on the available processing power and the 

anticipated smoothness of the hair. 

Result of this technique are hair strands with different tessellated hair segments. Screen 

space size setting 15 gives a smooth result for the example hair strands with only a 

small number of subdivisions per hair strand. 
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Figure 51: Example of SSALOD with bend angle minimum 5, bend angle max 45 and hair segment 

screen space size of 40, 15 and 4 from top to bottom. 

5.12.2. Hair Culling 

Another way to save computing resources is not to generate and tessellate hair strands, 

which are not visible. These calculations can also be done in the TCS. The implemented 

solution for this character rendering system uses the normals of the scalp mesh to decide 

if hairs should be generated or not. A slider was added, which controls the amount of 

culled hairs. If hairs are culled, which are visible to the viewer, is dependent on the 

created guide hairs and it cannot be guaranteed that visible hairs are not culled. 

Therefore, this slider needs to be adjusted carefully. For short hair it is less likely that 

hairs are culled, which are visible. In this case the culling value can be set higher. 
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Figure 52: Hair culling with culling scale 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 

5.13. Hair Shading 

Previous sections were concerned with the geometric generation of hair. Another 

important part of high quality hair is the shading of the hair. For hair shading 

Filmakademie Baden-Württemberg has already implemented a hair shading algorithm 

based on [Sadeghi et al. 2010; Zinke and Weber 2007]. In this section this implemented 

shading algorithm is explained. This algorithm has been ported to glsl and is used for 

the generated hair. 

[Sadeghi et al. 2010] added to physically based 

shading model artistic friendly controls. Their 

implementation is based on [Marschner et al. 

2003]. The hair is represented as a translucent 

cylinder with tilted cuticles. These cuticles have 

the effect that the single scattering of the hair has 

three subcomponents. These subcomponents are 

the primary highlight (R), the secondary 

highlight (TRT) and rim light (TT). Figure 53 

shows the different paths light can take through a 

hair fibre. The primary highlight is from light 

that is directly reflected. Therefore, the colour of the primary highlight is the same 

colour as the light. The secondary highlight comes from light that was absorbed by the 

hair fibre, reflected internally and appears next to the primary highlight. The secondary 

highlight is nearer to the tip than the primary highlight. The colour of the hair influences 

Figure 53: Hair model [Sadeghi et al. 2010] 
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the colour of the secondary highlight. The rim light happens when light is transmitted 

through the hair fibre. In a backlighting situation a bright halo is shown around the hair. 

This effect is described with TT. Preferably, artists want to be able to modify the 

primary highlight, the secondary highlight and the rim light. 

vec3 lightDir = normalize(light_positions[i] – gs_worldPos).xyz; 
float lightVec = dot(lightDir, gs_tangent); 
float viewDepSpec = dot(gs_viewDir, gs_tangent); 
 
float theta_h = asin(lightVec) + asin(viewDepSpec); 
float cosPhi_i = dot(normalize(lightDir – lightVec*gs_tangent), 
 normalize(gs_viewDir – viewDepSpec*gs_tangent)); 
 
// R (reflection) component  
vec3 reflectionColor = clamp( 
 _AM_c_R * pow( abs(cos(theta_h - _AM_s_R)) ,reflectWidth ) , 0.0, 1.0);  
 
// TRT component 
vec3 transRefTransColor = clamp( 
 _AM_c_TRT * pow( abs(cos(theta_h - _AM_s_TRT)),scatterWidth ),  
 0.0, 1.0);  
 
// TT component 
vec3 transTransColor = clamp(_AM_c_TT * max(0.0, cosPhi_i) *  
 pow( cos(theta_h - _AM_s_TT) , transmitWidth ), 0.0, 1.0); 
 
// diffuse component 
vec3 diffColor = clamp(_AM_d * sqrt(min(1.0, lightVec*lightVec)) + 
(gs_strandPosition * tipColor + gs_strandPosition * rootColor), 0.0, 1.0); 
 
fragColor.xyz += (diffColor + reflectionColor + transTransColor + 
 transRefTransColor) * light_colors[i].xyz * lightPower; 

Figure 54: Hair shading glsl code 

Our implementation allows artist to change colour, strength, width and shift of the R, 

TT and TRT component. Additionally, it is possible to change the diffuse, root and tip 

colour of the hair. For every light in the scene the code of Figure 54 is executed. 

Calculation is done based on the tangents of the hair. First, the light direction is 

calculated with the position of the light and the position of the hair. Afterwards the 

angles θ and φ are calculated. With these angles and the artist controlled input variables 

the R, TT, TRT and diffuse colour are calculated. In the end all components are added 

together for the final colour. 
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Figure 55: Sara hair style with hair shading 
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6 .  C h a r a c t e r  R e n d e r i n g  S y s t e m  I n t e g r a t i o n  

The character rendering system is implemented in the open source framework of 

Filmakademie Baden-Württemberg called Frapper. It uses Qt for the graphical user 

interface and Ogre3D for graphics rendering including animations. Frapper is node 

based. Different nodes inside Frapper provide different functionalities. Two tasks were 

required to put the developed hair rendering system and the previous work that has been 

done for character rendering together. The first task was to create a node, which 

provides the functionality for the hair rendering system. This node is described in the 

next subsections. The second task was to translate the Cg shader for character rendering 

into glsl. 

Character rendering has previously been done with a different node called 

AnimatableMeshNode. This node inherits from GeometryAnimationNode, 

which provides functionality to produce 3D geometry and play animations. 

For the hair rendering system a custom node was created, which provides all adjustable 

inputs and functionality. This node is called AnimatalbeMeshHairNode. It is used 

to load the character geometry including the hair geometry. For each character there is 

one mesh file created, which includes all geometric information for face, eyes, teeth, 

clothes, eye brows, eyelashes, scalp mesh and guide hairs. Additionally, the node is 

used inside Frapper to modify input parameter of the different geometries. For 

AnimatalbeMeshHairNode input configurations were added to be able to modify 

the hair style. This section gives an overview about all input variables and their effect 

for hair rendering. The AnimatalbeMeshHairNode is subdivided in four tabs 

called Hair Geometry, Hair LOD, Hair Lighting and Light Definition. 

6.1. Hair Geometry 

The first tab Hair Geometry is concerned with all input values, which directly 

influence the form of the hair geometry. First input value is the Geometry File. Here 

the character mesh with all the geometry data needs to be selected. Light Description 

File is for a txt file, which includes the data of all light sources. With this file different 

lighting settings can be loaded in the scene in a fast way without having to add and 

place each individual light. Light description files have usually 8 to 16 lights included. 

The next two string based input parameters are Scalp Mesh Name and Hair Guides 

Name. These two inputs are important for the right selection of the scalp mesh and the 

guide vertices. All geometry in the mesh file is stored as submeshes. When the mesh file 

is selected and the mesh is loaded, these submeshes are searched for the scalp mesh and 

all the hair guides. Submesh names must contain these strings, which were set as input 
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of Scalp Mesh Name or Hair Guides Name, that the 

AnimatalbeMeshHairNode is able to select the right 

submeshes when the mesh is loaded. If the scalp mesh or 

guide hairs are not found in the load mesh method, an error 

will be logged and the mesh will not be rendered. It is also 

important to keep in mind that the number of indices of the 

scalp mesh have to be the same as the number of guide 

hairs. Only then hair can be loaded and multi strand 

interpolation is rendered correctly. 

The following input value Distance Root Vertex to Scalp 

Vertex is a slider to configure the distance the root vertex 

of a hair guide can have to a scalp vertex and still be recognised as the corresponding 

hair guide. This functionality was added for the case when the root vertices of the hair 

guides are not exactly placed on the vertices of the scalp mesh. 

Assigned Bone Name is the name of the bone the hair style is assigned to. This 

assignment is done to support hair style movement relative to a bone when animation is 

applied to it. Hair Style Initial Position defines the initial position of the hair style 

relative to the bone position. 

Single Strand is a check box to enable single strand 

rendering. If this input parameter is not selected, the hair 

will be rendered with multi strand interpolation. The 

mesh needs to be reloaded before the different hair 

interpolation method is applied. The slider 

g_rootRadius, g_tipRadius and g_clumpWidth are 

single strand interpolation specific parameters. 

g_rootRadius defines the maximum radius around the 

guide hair in which single strand interpolated hairs can 

be generated. g_tipRadius has the same functionality 

only for the tip of the hair. With modifying 

g_rootRadius and g_tipRadius, it can be defined how 

the distance of interpolated hair strands changes from 

the root to the tip of the hair. It can often be observed 

that hair moves together at the tip of the hair to build 

combined, clump based hair strands. g_clumpWidth 

scales the radius of g_rootRadius and g_tipRadius. 

The following five parameter are used for single and 

multi strand interpolation. The input parameter to 

change the width of the hair is g_strandWidth. It defines the minimum width of the 

Figure 56: Hair geometry part1 

Figure 57: Hair geometry part 2 
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hair. Tapering of the hair can be modified with g_strandTaperingStart. This slider 

defines at which distance relative to the tip of the hair strand tapering starts. This 

distance is counted in vertices. Next the input parameter g_curlyHairScale, 

g_deviationHairScale and g_thinning are provided. These are the scale parameters for 

curly hair, hair deviations and thinning. 

The last three sliders are the input values to configure the combination of multi strand 

and single strand interpolation. g_clumpTransitionLength defines how long the 

transition phase between single and multi strand interpolation is. The distance of two 

hair guides when single strand interpolation should be performed is configured with 

g_maxDistance. If the distance between two hair guides is under this value, multi 

strand interpolation will be used. g_maxAngle handles the maximum angle between 

guide hairs. At the end there are two check boxes Render Guide Strands and Render 

Scalp Mesh to enable and disable rendering of guide hairs and scalp mesh. 

6.2. Hair LOD 

The second tab Hair LOD provides all level of detail 

settings, which can be applied to the hair rendering. First 

is the Hair LOD Factor, which changes the level of 

detail of the hair. Between 0.0 and 1.0 the hair number 

and width is modified. Between 1.0 and 2.0 the detail 

tessellation factor is increased. g_tessellationFactor is 

the slider to control the number of generated hairs per 

TCS invocation. g_detailFactor is the input value for 

the number of subdivisions per guide hair segment. Hair 

culling can be configured with the input value 

g_backFaceCullingScale. The value 1.0 is here 

maximum culling. 

SSALOD can be enabled and disabled with Screen 

Space Adaptive LOD. Is SSALOD enabled changes to the detail tessellation factor will 

have no effect. SSALOD can be configured with Segment Screen Size, Bend Angle 

Meaningful and Bend Angle Max Tessellation. Segment Screen Size defines the size 

a hair segment should have in screen space. Dependent on this value the detail 

tessellation factor is calculated. Bend Angle Meaningful and Bend Angle Max 

Tessellation are configurations for form dependent tessellation. They define the angle 

between hair segments, which is meaningful enough to start hair segment subdivision 

and the angle were the maximum amount of subdivisions should be applied. 

  

Figure 58: Hair LOD 
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6.3. Hair Lighting 

Hair Lighting is concerned with all the hair shading 

input values. Basic colours of the hair, which can be 

defined are rootColor, tipColor and diffuseColor. 

These colour values set the hair colour of the hair roots, 

the hair colour of the hair tip and the overall diffuse 

colour of the hair. The next input parameters are 

subdivided into parameters to change the R, the TRT 

and the TT component of the hair. For each of these 

components the colour, strength, width and shift can be 

modified. The input values for R start with reflect, the 

input values for TRT start with scatter and the input 

values for TT start with transmit. 

 

6.4. Light Definition 

The last tab is Light Definition, which consists of all 

lighting specific values. The position of the lights can be 

modified with Light Scale Pos. This value scales the 

position of the created point lights. The intensity of the 

light can be set with lightPower and the number of used 

lights for the geometry is set with Number of Lights. 

The rendering performance of the hair is directly 

dependent on the number of lights that are set in the scene. The more lights are used the 

higher is the fragment shader load for hair rendering. 

  

Figure 59: Hair Lighting 

Figure 60: Light Definition 
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7 .  H a i r  R e n d e r i n g  P e r f o r m a n c e  A n a l y s i s  

In this section the developed hair rendering system is evaluated for performance and 

compared against the NVIDIA Fermi Hair Demo [NVIDIA 2010b] and AMD 

TressFX11 v2.0 [AMD 2013]. Graphics card, which was used for this test is a NVIDIA 

Geforce GTX 580 [NVIDIA 2010a]. The CPU of the test hardware was a 6 core Intel 

Xeon X5660 with a core speed of 2.80 GHz [Intel 2010]. NVIDIA Nsight 4.1 [NVIDIA 

2014a] and Fraps 3.5.99 [Beepa 2013] functioned as profiling tools. NVIDIA Nsight 

allows to profile frames and to analyse single draw calls. With this tool 5 frames were 

captured per test application and the average result is taken for comparison. Fraps can 

record the frame rate of the application over a predefined time and gives as result the 

lowest, highest and average frame rate. The frame rate of all three applications were 

recorded for 60 seconds. 

Application Frapper Hair NVIDIA Fermi Hair  AMD TressFX11 v2.0 

Guide hairs 335 166 21809 

Rendered hairs 37632 <29440 65427 

Hair segment 

count 
30 between 6 and 40 13 or 10 

Hair segment 

subdivision 
2 2 not supported 

Lighting 1 point light 1 directional light 1 point light 

Shadows not supported disabled disabled 

Simulation not supported disabled disabled 

Resolution 1284x1058 1024x768 1024x768 

Table 1: Test application setup 

The setup of the three applications is shown in Table 1. Frapper Hair is our 

implemented hair rendering system. Sara’s hair style was used for this test. Hair culling 

was set to 0.3. Her hair style is the most similar hair style to the ones of the NVIDIA 

Fermi Hair and the AMD TressFX11 v2.0 demo. It was tried to make the conditions as 

near as possible. The NVIDIA Fermi Hair demo and AMD TressFX11 v2.0 were not 

modified in code. For NVIDIA Fermi Hair demo scene rendering, simulation and 

shadows were disabled. The hair render count for the NVIDIA demo cannot precisely 

be counted. Reason for this is that Tariq implemented in her demo a scalp texture, 

which influences the maximum amount of rendered hair dependent on the position of 

the generated hairs to save resources. The generated hairs are less than 29440 hairs, 

which is the maximum amount of generated hairs for the provided hair style input data. 

In the AMD TressFX demo it was possible to disable the HUD, simulation and self-

shadowing. The 21809 hair strand input data is copied twice to triple the amount of 

rendered hair per frame. 
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Figure 61: Test application setup NVIDIA Nsight 

The test application setup for test with NVIDIA Nsight is shown in Figure 61. The hair 

styles in all demos were positioned once and 5 different frames were captured, which 

were analysed in NVIDIA Nsight. Only draw calls for hair rendering were recorded and 

had an impact on the results. Node that for our implementation the hair shading is not 

rendered correctly. This result of the hair shading only happens in the NVIDIA Nsight 

graphics debugger. If Frapper hair rendering is started in a standalone application the 

hair shading is correct. 

Application Frapper Hair NVIDIA Fermi Hair AMD TressFX11 v2.0 

GPU time 

avg/min/max [μs] 
17989/17977/17993 4676/4556/4695 9992/9990/9993 

CPU time 

avg/min/max [μs] 
128/107/615 <1/<1/<1 <1/<1/<1 

Number draw calls 1 6 1 

Primitives 17640 1252 1201764 

Shaded pixel count 

avg/min/max 

4739814/4699632/ 

4758640 

2896233/2877888/ 

2908336 

3819635/3786960/ 

3844624 

Shaded pixel coverage 

avg/min/max 
347% / 344% / 349% 365% / 362% / 367 % 485% / 481% / 488% 

Bottleneck top three 

average % 

36.46% Rasterizer 

32.11% L2-Cache 

10.47% Blending and 

Z-Buffer 

33.49% Rasterizer 

31.22% L2-Cache 

8.20% Blending and 

Z-Buffer 

60.20% Rasterizer 

24.04% Shading 

18.78% L2-Cache 

Utilization top three 

average % 

31.42% Shader 

25.84% Frame Buffer 

16.33% Rasterizer 

26.92% Shader 

22.09% Frame Buffer 

13.62% Rasterizer 

41.13 % Shader 

19.37% Frame Buffer 

12.04% Z-Culling 

Shader Type 0% Vertex 

4.27% TCS 

34.08% TES 

13.06% Geometry 

48.55% Fragment 

0.01% Vertex 

0.32% Hull 

19.00% Domain 

22.64% Geometry 

57.87% Pixel 

12.90% Vertex 

0.0% Hull 

0.0% Domain 

0.0% Geometry 

87.42% Pixel 

Table 2: Results NVIDIA Nsight profiler 

The Frapper hair implementation is less performance optimized than the other two test 

applications. Interesting is the spend CPU time. Only the measurements of the CPU 

time suffered from huge differences in the results. Therefore the slowest and fastest 
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measurement was ignored for the average CPU time. The draw call of Frapper hair uses 

128 μs render time, while the other application are under 1 μs for their spend CPU time. 

AMD TressFX11 v2.0 is the application, which renders the hugest amount of hairs, 

while using the highest number of primitives per draw call. The NVIDIA hair demo 

uses the smallest amount of primitives. Hair rendering is done in 6 draw calls. The 

shortest time took the NVIDIA Fermi Hair demo to render. However, the rendered hair 

count is smaller than for the other test applications, which is the main reason for the 

short GPU time. Main bottleneck for all three implementation is the rasterizer. This is 

no surprise because there is a huge number of triangles that need to be rasterized. The 

second highest bottleneck of AMD TressFX11 v2.0 is shading. If it is possible to do 

more shading optimizations, performance can be improved further. However, it better 

utilizes the L2 cache compared to the other implementations. 

     

Figure 62: Test application setup Fraps 

The second test was performed with Fraps. The frame rate was recorded over the time 

duration of 60 seconds. Results of this test are the average, minimum and maximum 

frame time. 

Application Frapper Hair NVIDIA Fermi Hair AMD TressFX11 v2.0 

Frames per second 

avg/min/max 
62.983/62/64 212.517/209/215 92.833/91/95 

Table 3: Results Fraps profiling 

This test shows that NVIDIA Fermi Hair takes 43.68% of the time it takes to render 

AMD TressFX11 v2.0. The Frapper hair rendering still cannot compete with the other 

hair rendering algorithms, but has a slight improvement for the average rendering time. 

Afterwards, more tests were made for the Frapper hair rendering with different detail 

tessellation factors and SSALOD activated. The test shows, that the increase of the 

detail factor reduces the performance drastically. SSALOD gives for the test view good 

results, which are near the render time of the detail factor. The highest visual difference 

is between detail factor 1 and detail factor 2 for the test view. In Figure 63 these 

differences are still hard to recognize. Especially the hairs at the edge of the hair style 

are smoother. Higher detail factors only make sense for this hair style when the camera 

has a smaller distance to the hair. Node that for this setting, the hair style with SSALOD 
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enabled and a screen segment size of 15 is near the performance of the test with detail 

factor 1. 

    

    

Figure 63: Comparison Sara hair style detail factor 1 (top left), detail factor 2 (top right), detail factor 64 

(down left) and SSALOD with segment screen size 15 (down right) 

   

Figure 64: NVIDIA Fermi hair demo setup Fraps detail factor 1 (left) and detail factor 64 (right) 
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Settings Frames per second avg/min/max 

Sara Gunnar NVIDIA Fermi 

Detail factor 1 125.450/125/126 173.200/172/174 377.567/374/381 

Detail factor 2 62.983/62/64 78.717/78/79 233.483/230/234 

Detail factor 16 11.467/11/12 13.800/13/14 32.717/32/34 

Detail factor 32 6.283/6/7 7.667/7/8 16.483/17/16 

Detail factor 64 3.300/3/4 4.033/4/5 8.250/8/9 

SSALOD, segment screen size 40 109.617/109/110 172.417/172/173 not supported 

SSALOD, segment screen size 15 109.050/108/110 172.467/172/174 not supported 

SSALOD, segment screen size 4 93.633/93/94 165.367/165/167 not supported 

Table 4: Sara/Gunnar/NVIDIA Fermi hair style results Fraps profiling with different tessellation settings 

For comparison with a short hair style, another test was done in Fraps with the Gunnar 

hair style. The Gunnar scalp mesh has a face count of 782, which results into a 

maximum of 50048 generated hairs. The settings of the hair are the same as for Sara’s 

hair style. Only the maximum distance and the maximum angle for transition into single 

strand interpolation had to be adjusted for better visual results. The hair segment count 

is 24. Especially, for short hair the number of used segments could be reduced to 

optimize performance further. 

    

    

Figure 65: Comparison Gunnar hair style detail factor 1 (top left), detail factor 2 (top right), detail factor 

64 (down left) and SSALOD with segment screen size 15 (down right) 
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The result of Gunnar hair style test is an increased performance compared to Sara’s hair 

style. This is an interesting result because for Gunnar 18768 hair segments and for Sara 

only 10050 hair segments need to be processed. The reason for this increased 

performance is the visual size of the hair. Sara’s hair style covers more screen space 

than Gunnar’s hair style. This leads to more pixels that need to be shaded. 

To support the previous claim another test was done with NVIDIA Nsight using this 

time the Gunnar hair style. The results are shown and compared to the result of the Sara 

hair style test in Table 5. First, less pixels are generated on screen. The Gunnar hair 

style has only 51.80% of the shaded pixel count of the Sara hair style. This leads to a 

smaller shaded pixel coverage, which reduces load on the rasterizer. Shader type 

distribution also changes slightly. There is less work to do for the TCS, TES and 

fragment shader. The geometry shader load increases 2.71%. 

Application Frapper Hair Sara Frapper Hair Gunnar 

GPU time avg/min/max [μs] 17989/17977/17993 12629/12621/12634 

CPU time avg/min/max [μs] 128/107/615 121/104/122 

Number draw calls 1 1 

Primitives 17640 18768 

Shaded pixel count 

avg/min/max 
4739814/4699632/4758640 2455338/2442640/2470128 

Shaded pixel coverage 

avg/min/max 
347% / 344% / 349% 180% / 179% / 181% 

Bottleneck top three average % 36.46% Rasterizer 

32.11% L2-Cache 

10.47% Blending and Z-Buffer 

33,67% L2-Cache 

14,95% Rasterizer 

9,09% Z-Culling 

Utilization top three average % 31.42% Shader 

25.84% Frame Buffer 

16.33% Rasterizer 

28.77 Shader 

18,71% Frame Buffer 

10,44% Z-Culling 

Shader Type 0% Vertex 

4.27% TCS 

34.08% TES 

13.06% Geometry 

48.55% Fragment 

0% Vertex 

4.21% TCS 

31.98% TES 

15.77% Geometry 

48.0% Fragment 

Table 5: Sara/Gunnar results NVIDIA Nsight profiler 
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Figure 66: Test application setup NVIDIA Nsight Sara and Gunnar hair style 

Both hair styles of Sara and Gunnar were compared with the NVIDIA Fermi hair 

implementation in respect to performance for hair segment subdivision. NVIDIA Fermi 

hair demo gives the better results for uniform subdivision of the hair segments. Frapper 

hair rendering can keep up with the NVIDIA demo when SSALOD is enabled. For a 

small amount of subdivisions the NVIDIA Fermi hair demo is the better solution, but 

for higher detail SSALOD gives the better performance. 

Overall, the ability to modify detail tessellation per fragment comes with a cost, which 

can be compensated with SSALOD. The Frapper hair rendering has still possible areas 

of improvements. First, the amount of hair segments can be reduced to increase 

performance. Nevertheless, this comes with reduced detail of the hair. Shader code can 

still be optimized to make better use of the L1 cache and therefore reduce the L2 cache 

bottleneck. On the plus side the Frapper hair rendering system allows smooth high 

quality hair at close up view of the hair. SSALOD can also increase the frame rate with 

reduced hair segments. AMD TressFX11 v2.0 is the fastest implementation. It has the 

cost of larger hair guide counts, less controllability about the level of detail and does not 

allow the subdivision of hair segments. The NVIDIA Fermi hair demo allows to save 

performance with the limitation of hair strand generation in predefined areas. For small 

hair segment subdivision it gives the better performance. But it is not possible to change 

the subdivision for every hair segment independently. This functionality allows the 

Frapper hair rendering and is therefore the better solution for rendering smooth hairs at 

close distances. 
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8 .  C o n c l u s i o n  

Result of thesis is an implementation of a hair rendering system using the OpenGL 4 

tessellation pipeline. The hair rendering system was integrated into the framework 

Frapper and utilizes the Ogre OpenGL 3+ renderer. Single strand and multi strand 

interpolation was combined in one draw call to generate a more realistic hair look with 

additional artistic control. The developed algorithm can handle hair guides with 

different hair segment count. The tapering of the hair is adjustable. Additional features 

are curly hair, random deviations and thinning. Furthermore, a level of detail system has 

been implemented to cull hair, which is not seen and to adjust hair segment subdivision 

dependent on the form of the hair and size of a hair segment projected into screen space. 

This level of detail system is called SSALOD. The rendered hair uses an artist friendly 

hair shading algorithm, which allows artist to modify the appearance of primary 

highlight, the secondary highlight and rim light. 

    

    

Figure 67: Character Sara with new hair rendering system 

The developed hair rendering system was integrated into the Frapper character 

rendering pipeline converting the existing Cg shader into glsl shader. As test character 

served the Sara character. In the future the Animation Institute of Filmakademie BW 
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plans to include this hair rendering system for their other characters Gunnar, Nikita and 

Hank. 

Performance of this algorithm was compared against [AMD 2013] and [NVIDIA 

2010b]. The results are that the AMD’s and NVIDIA’s algorithm have the better 

performance for hair styles with hair segments, which are either not subdivided or only 

subdivided in a small number. The developed SSALOD algorithm has its strength at 

close up views to render smooth hair, where a higher subdivision of hair segments is 

necessary. 

8.1. Future Work 

There are many areas were the hair rendering algorithm could still be improved. One 

part that was not implemented is shadowing of the hair. Here deep opacity maps could 

be implemented [Yuksel and Keyser 2008a]. From every light source first a depth map 

is rendered. Out of this depth map, opacity layers are generated. The depth map and the 

opacity layers are used for the final rendering of the hair. Deep opacity maps have the 

problem of two additional render passes per light source. This can lead to a performance 

problem when multiple lights are used. 

Another feature, which has not been implemented was hair simulation. If hair 

simulation is integrated the SSALOD algorithm will need to be adapted for hair form 

dependent LOD calculations. The angle between hair segments is calculated once for 

the static hair guides. These angle calculations would need to be updated before every 

rendered frame. Making these calculations on the GPU should be reasonably fast. 

Further performance optimizations could be done for the hair rendering algorithm. First, 

it needs to be evaluated if and how the L1 cache can be better utilized to increase 

performance. It could be evaluated if the use of OpenGL or Ogre has to do with the 

performance loss. For the future it could also be tested if future graphic APIs like AMD 

Mantle [AMD 2014] or DirectX 12 [McMullen 2014] have a positive effect on the 

performance of the developed hair rendering system. 

The rendered hair count was 37632. For a more realistic hair style more hairs would 

need to be rendered. Up to 150000 rendered hair is the target. With improved graphic 

cards and further performance optimizations this targeted hair count should be possible. 

Another area of improvement is artistic control of the hair. Especially, when the greater 

part of the hairs are generated, control for the hair style is limited. For our hair 

rendering system artists can control the basic shape of the hair style with guide hairs. In 

Frapper it is possible to modify the width of the hair, curly hair scale, random deviation 

scale and thinning scale to adjust the appearance of the hair. Translation form multi 

strand interpolation to single strand interpolation can also be influenced by the artist. 
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One problem that has not been solved is how to make partings. Separate hair parts 

would be the solution without changing the developed algorithm and also would the 

best solution for performance. Further research on how to give artist more 

controllability about the generated hair style is an important area for real-time hair 

rendering. 

For hair shading only single hair scattering was implemented. For improved visual 

quality in hair rendering multiple scattering of the hair has to be taken into account. 

There has already been done research about multiple hair scattering in real-time by 

[Zinke et al. 2008]. Their GPU implementation is based on deep opacity maps and uses 

also a depth map for shaping the depth layers. The used data per layer is increased. For 

4 layers 8 textures are needed to store the data. They achieved with their real-time dual 

scattering algorithm 14 frames per second. Not yet ready for real-time applications, but 

a step in the right direction. 

In conclusion, it is possible today to render realistic hair on modern graphic cards and 

on current generation consoles like the Xbox One and PS4. The realism of real-time hair 

rendering can still be improved further for rendered hair count and visual quality. 
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