

Real-Time Hair Rendering

Master Thesis

Computer Science and Media M.Sc.

Stuttgart Media University

Markus Rapp

Matrikel-Nr.: 25823

Erstprüfer: Stefan Radicke

Zweitprüfer: Simon Spielmann

Stuttgart, 7. November 2014

Real-Time Hair Rendering Abstract

 i

A b s t r a c t

An approach is represented to render hair in real-time by using a small number of guide

strands to generate interpolated hairs on the graphics processing unit (GPU). Hair

interpolation methods are based on a single guide strand or on multiple guide strands.

Each hair strand is composed by segments, which can be further subdivided to render

smooth hair curves. The appearance of the guide hairs as well as the size of the hair

segments in screen space are used to calculate the amount of detail, which is needed to

display smooth hair strands. The developed hair rendering system can handle guide

strands with different segment counts. Included features are curly hair, thinning and

random deviations. The open graphics library (OpenGL) tessellation rendering pipeline

is utilized for hair generation.

The hair rendering algorithm was integrated into the Frapper’s character rendering

pipeline. Inside Frapper, configuration of the hair style can be adjusted. Development

was done in cooperation with the Animation Institute of Filmakademie Baden-

Württemberg within the research project “Stylized Animations for Research on Autism”

(SARA).

Keywords: thesis, hair, view-dependent level of detail, tessellation, OpenGL, Ogre,

Frapper

Real-Time Hair Rendering Declaration of Originality

 ii

D e c l a r a t i o n o f O r i g i n a l i t y

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

Copyright nor violate any proprietary rights and that any ideas, techniques, quotations,

or any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing

practices.

I confirm that I understand the meaning of the affidavit and the legal consequences for

examination (§ 19 Abs. 2 Master-SPO of Stuttgart Media University) as well as

criminal law (§ 156 StGB) for a wrong or incomplete affidavit.

Markus Rapp, 7. November 2014

Real-Time Hair Rendering Acknowledgements

 iii

A c k n o w l e d g e m e n t s

This work has been carried out in the German Research Foundation (DFG) funded

project SARA (AR 892/1-1).

I want to say thank you to the Animation Institute of Filmakademie Baden-

Württemberg, who gave me the chance to implement a tessellation based, real-time hair

rendering system for their research project SARA. Thank you for the support of the

R&D department including Volker Helzle, Diana Arellano, Simon Spielmann and Kai

Götz.

I also want to say thank you to my family, who supported me financially over my whole

study time.

Finally, I want to say thank you to all professors and employees of Stuttgart Media

University and University of Abertay Dundee, who taught me a lot at my studies.

Without the skills I got from the lectures and coursework, making this thesis would not

have been possible.

Real-Time Hair Rendering Contents

 iv

C o n t e n t s

Abstract .. i

Declaration of Originality .. ii

Acknowledgements .. iii

Contents ... iv

1. Introduction .. 1

2. Related Work .. 3

2.1. NVIDIA Fermi Hair Demo 2008 ... 5

2.2. NVIDIA HairWorks... 10

2.3. AMD TressFX .. 11

3. Requirements .. 17

4. OpenGL Tessellation Rendering Pipeline ... 19

4.1. Vertex Shader ... 20

4.2. Tessellation Control Shader .. 21

4.3. Tessellator ... 22

4.4. Tessellation Evaluation Shader ... 23

4.5. Geometry Shader ... 24

4.6. Fragment Shader .. 26

4.7. Tessellation Primitive Isolines ... 27

5. Implementation .. 31

5.1. Input Data .. 32

5.2. Single Strand Interpolation ... 33

5.3. Multi Strand Interpolation .. 36

5.4. Combination of Single Strand and Multi Strand Interpolation................................. 38

5.5. Handling Different Hair Guide Sizes ... 39

5.6. Expand Lines into Camera Facing Quads ... 41

5.7. Hair Form ... 42

5.8. Hair Strand Tessellation .. 43

5.8.1. Hermite Curve Interpolation ... 43

5.8.2. Uniform Cubic B-Splines .. 45

5.9. Curly Hair ... 47

5.10. Thinning .. 48

5.11. Random Deviations .. 51

Real-Time Hair Rendering Contents

 v

5.12. Level of Detail ... 53

5.12.1. Screen Space Adaptive Level of Detail ... 54

5.12.2. Hair Culling ... 55

5.13. Hair Shading ... 56

6. Character Rendering System Integration ... 59

6.1. Hair Geometry .. 59

6.2. Hair LOD .. 61

6.3. Hair Lighting .. 62

6.4. Light Definition .. 62

7. Hair Rendering Performance Analysis ... 63

8. Conclusion .. 70

8.1. Future Work ... 71

9. References .. 73

10. List of Figures .. 78

11. List of Tables .. 81

12. List of Abbreviations .. 82

Real-Time Hair Rendering 1. Introduction

 1

1 . I n t r o d u c t i o n

Real-time hair rendering has been a huge challenge in the games industry and for

simulation applications. On a human head are up to 150000 hairs. Main challenge is to

be able to render this huge amount of hair strands in real-time. With modern graphics

processors it becomes possible to render thousands of hair strands on the GPU. How can

modern graphics cards be utilized for hair rendering? Is it possible today to render

realistic hair in real-time?

These questions were answered within the research project SARA for Institute of

Animation of Filmakademie Baden-Württemberg. The official name of the project is

“Impact of non-photorealistic rendering for the understanding of emotional facial

expressions by children and adolescents with high-functioning Autism Spectrum

Disorders”. The project deals with the creation and animation of computer-generated

facial expressions in different levels of abstraction for the purpose of investigating how

these different facial expressions are perceived by subjects with Attention-

Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders (ASD).

Filmakademie Baden-Württemberg cooperates for this research project with University

of Konstanz and University Hospital Freiburg. The project is funded by DFG.

One area of the project is the rendering of realistic hair in real-time. For hair rendering

there is already an implementation. The implementation uses predefined geometry. For

every single hair strand vertices, normals, tangents and texture coordinates are stored in

a mesh file. This leads to a huge amount of data, which needs to be loaded, transferred

to GPU memory and rendered.

Target of this thesis is to research different techniques to reduce the amount of data that

needs to be stored and to increase the frame rate for rendering the virtual character. It is

investigated how hair geometry can be directly generated on the GPU. The idea is to use

a small number of guide strands and generate new hair strands out of these guides.

Techniques are compared, which use a single guide strand as well as multiple guide

strands as input. Different distribution patterns and randomization techniques for the

position of hair and shape of hair are tried out. It is investigated how level of detail

(LOD) techniques can be utilized to be able to render smooth hair strands and at the

same time save processing resources for an increased frame rate. Additionally, hair

shading techniques are evaluated for rendering of realistic hair.

Related work, which already has been done in real-time hair rendering is analysed in

section 2. Afterwards, requirements for the development of the hair rendering system

are described. In section 4 the features and functionality OpenGL tessellation rendering

pipeline are shown. Section 5 focuses on the implementation of the hair rendering

system. Topic in section 6 is the integration of the developed hair rendering system into

Real-Time Hair Rendering 1. Introduction

 2

the character rendering system of the Frapper framework. In the following section the

performance of the developed hair rendering system is tested and compared against

related work. The final section concludes this thesis and points out possible areas of

future research.

Real-Time Hair Rendering 2. Related Work

 3

2 . R e l a t e d W o r k

In the past, real-time hair rendering could only be done with a mesh representation of

the hair on which a material was applied.

Figure 1: Hair rendering of Ruby by [Scheuermann 2004]

One attempt to put hair on a human mesh was done by [Scheuermann 2004] of ATI

Research and presented at Siggraph 2004. Scheuermann’s approach is based on the hair

shading model of [Kajiya and Kay 1989] and specular highlights model of [Marschner

et al. 2003]. The hair model consisted of two-dimensional (2D) layered polygon patches

with a main texture for the structure and an opacity map for the diversity of the hair. 2D

layered polygon patches were used instead of lines because they have a low geometric

complexity, which reduced load for the vertex shader. Shading was done with a diffuse

lighting term, two specular highlights and ambient occlusion. The first specular

highlight is the direct reflection of the light. The second specular highlight is

transmitted into the hair in direction of the root and internally reflected back to the

viewer. As a result, the colour of the second specular highlight is modulated by the hair

colour and the shape of the highlight is depolarized. Additional calculations need to be

executed for depth sorting, which is done entirely on the GPU. Four render passes are

needed for this operation. This hair technique was used by ATI for their Ruby demo

“The Assassin”.

In 2004 [Nguyen and Donnelly 2004] developed the Nalu Demo for the NVIDIA

Geforce 6800 launch. Their target was to render realistic hair in real-time. The hair of

Nalu was long, blond and needed to flow underwater. 4095 individual hairs were

represented as line primitives. These lines had a total of 123000 vertices. However, this

Real-Time Hair Rendering 2. Related Work

 4

number of hairs was too huge for dynamics and collision detection calculations. The

solution was to use hundreds of control hairs instead. Segments of the control hair did

not have a uniform length. Segments near to the hair root were short and further away

from the root were longer. This allowed to render long hairs with a smaller vertex count.

A scalp mesh defined the roots of the control hairs.

Figure 2: Screenshot of NVIDIA Nalu demo [NVIDIA 2004]

For every render pass tangents of the control hairs were calculated. The lines were

converted into Bézier curves and tessellated to get smooth lines. These smoothed lines

were interpolated to increase the hair density. For interpolation three control hairs were

selected according to their position in the scalp mesh. Barycentric interpolation was

used to calculate a new vertex position out of three vertex positions of the guide hairs.

The barycentric coefficients were random generated, which gave a random distribution

of hair strands within the scalp mesh triangle. The result hair had the same number of

vertices as the guide hairs. A dynamic vertex buffer was used to hold the vertex data.

Dynamics and collision computations were based on a particle system, where every

control hair vertex represented one particle. Distance constraints between particles were

used to control the hair length. Hair segment repelled when they were too close to each

other and contracted if they were too far apart. Collision was done only with spheres.

Spheres represented the head and upper body of Nalu as well as every vertex of the

guide strands.

For the local reflectance model of the hair, the lighting model of [Marschner et al. 2003]

was used, which describes how hair fibres scatter and reflect light. The hair fibre is

described as a translucent cylinder. Three possible paths that light may take through the

Real-Time Hair Rendering 2. Related Work

 5

hair are considered. The first is a direct reflection of the light, which bounces of the

surface. In the second path light is refracted into the hair and refracted out again. In the

third case light refracts into the hair, is reflected inside the surface of the hair and

refracted out of the hair. [Nguyen and Donnelly 2004] also considered self-shadowing

of the hair. For this purpose they used opacity shadow maps, which were developed by

[Kim and Neumann 2001].

2.1. NVIDIA Fermi Hair Demo 2008

Sarah Tariq implemented an impressive real-time hair simulation and rendering demo

based on the work of the NVIDIA Nalu Demo. The demo with source code was

published at [NVIDIA 2010b]. Papers and presentations about Sarah Tariq’s work are

available at [Tariq and Bavoil 2008b; Tariq 2010c; Yuksel and Tariq 2010; Tariq and

Bavoil 2008a; Tariq 2010d, 2010b, 2010a, 2008].

Figure 3: NVIDIA Fermi Hair Demo screenshot [NVIDIA 2010b]

The hair demo uses 166 simulated hair strands. The rest of the hairs are generated and

interpolated on the GPU with two different interpolation patterns called single strand

and multi strand interpolation.

Single strand interpolation uses one guide hair. The interpolated hair has the same shape

as the guide hair and is placed with a random offset in two directions in a plane that is

perpendicular to the guide strand. A predefined maximum radius is set to control the

Real-Time Hair Rendering 2. Related Work

 6

maximum distance of the interpolated strand to the guide strand. Single strand

interpolated hair results into a clumpy hair style. For the given 166 guide strands up to

10624 strands can be generated on the GPU.

Multi strand interpolation works the same way as in [Nguyen and Donnelly 2004]. The

interpolated strand is created by linearly interpolating the attribute of three guide

strands, which are selected according to the triangle vertices of a scalp mesh.

Coefficients values for barycentric interpolation are generated randomly. Result of this

interpolation scheme is a uniform look. The number of strands that can be generated is

dependent on the face number of the scalp mesh. The demo scalp mesh consists of 294

faces, which allow up to 18816 hair strands generated on the GPU with a single draw

call.

Hair geometry is rendered as camera facing quads. The problem with rendering lines is

that the width of lines can only be changed per draw call. Width of hair segments need

to be different to be able to render hair strands with varying width towards the hair tip.

Varying width would only be possible for lines with multiple draw calls. A draw call is

an expensive operation and the number of draw calls should be minimized. Therefore

rendering lines with multiple draw calls is bad for performance. Additionally, a flexible

hair segment width is needed for level of detail operations. Furthermore, it is not

possible to apply textures to lines. Camera facing quads can be textured and have a real

world width. It is also possible to taper hair towards its end with camera facing quads.

However, rendering quads is more expensive than rendering lines. All calculation prior

to rendering like simulation, tessellation and interpolation, are done with lines. In the

geometry shader those calculated lines are expanded to camera facing quads.

The hair demo utilizes the tessellation rendering engine of modern GPUs, which is

perfect for the creation of large amounts of data on the GPU. The main bottleneck is the

bandwidth between central processing unit (CPU) and GPU. It is faster creating data on

the GPU than uploading data from the CPU to the GPU. It is also possible to have a fine

grained and continuous level of detail with the tessellation engine.

The demo also works with DirectX 10 capable graphic cards. The geometry shader is

not used for the generation of hair because it would be extremely inefficient. The

geometry shader is optimized for relatively small amounts of data expansion. A good

use case for the geometry shader is to expand lines to camera facing quads. This raises

the question how it is possible to generate geometry without the tessellation engine and

the geometry shader? The idea is to render dummy hair strands with empty vertex and

index buffer. A line strip render call with a vertex count of m*n needs to be executed,

where m stands for the maximum number of vertices per strand and n is the number of

interpolated strands to render. Rendering for this operation is reasonably fast because

there are no real attributes used. The evaluation of vertex attributes can be done in the

Real-Time Hair Rendering 2. Related Work

 7

vertex shader. Guide strand attributes are stored into textures or buffers. Stored data are

length, width and vertex positions of the guide strands. The GPU uses a different vertex

index (ID) for each call of the vertex shader, which allows to select the right vertex

attributes of the strand segment that needs to be rendered.

The implementation with the tessellation engine compared to the DirectX 10

implementation is faster, easy and intuitive, more programmable, supports continuous

level of detail, and the tessellation engine saves memory and bandwidth. The DirectX

11 tessellation engine introduces three new shader stages, the hull shader, the tessellator

and the domain shader, which are placed between the vertex shader and the geometry

shader in the DirectX 11 shader pipeline. For the tessellation engine the isoline domain

was used. The hardware tessellator creates for each patch a number of isolines with

multiple line segments per line. A patch with a single control point was used as

primitive topology. In the hull shader is calculated how many lines are generated and

how many segments per line are tessellated. There is a hardware limitation for how

many lines and line segments can be generated with the tessellation engine. Per patch a

maximum of 64 isolines with 64 segments can be created. The hull shader allows to

calculate the level of detail per line segment.

In the Fermi Hair Demo the level of detail is dependent on the distance of the camera to

the head. With a higher distance less hair strands with a thicker width are generated.

This is done to achieve no visible reduction in density of hair and at the same time save

computing resources for rendering. A density map and thickness map were used for a

more precise level of detail. Artists can define in the density map, which areas of the

scalp should have a high density of generated hairs. This allows to use the limited

computing resources at places of the scalp, where it is most important to show hairs. In

the thickness map it can also be defined how thick the hair should be. The final

positions of the line segments vertices are calculated in the domain shader.

Following steps are performed for hair rendering. First, the guide hairs are imported.

Every frame, guide hairs are simulated, tessellated, interpolated and rendered. Shading

operation and shadow calculations are executed for the final rendering of the hair. These

multiple operations have to be divided in multiple render stages. At the end of each

stage, data is streamed out to the next stage to minimize re-computation. In the first

stage, simulated guide strands are tessellated and streamed out. These tessellated strands

are interpolated in the next stage. Afterwards, the final hair is rendered for shading into

shadow maps. The last stage is to render the final hair to the screen.

The guide hairs are smoothly tessellated with uniform cubic b-splines, which

automatically handle continuity. To tessellate hair strands with uniform cubic b-splines

four vertices of the strand are needed per patch. The end points of the guide hair need to

be repeated because uniform cubic b-splines do not interpolate the endpoints.

Real-Time Hair Rendering 2. Related Work

 8

It is also possible to render curly hair in the demo. Therefore, additional curl offsets are

pre-computed and encoded. The result is stored in a buffer or a texture. Curl offsets can

be created procedurally as in the demo. It is also possible that artists create these curl

offsets manually.

Another important feature of the NVIDIA hair demo is random variations between hair

strands. Without this feature hair looks smooth and synthetic. Randomness is applied

when hair is interpolated. Two types of deviations are defined. The first type is small

deviations near the tips, which is applied to 30% of the hair strands. The second type is

applied to 10% of the hair strands and produces deviations along the whole strand.

Hair simulation is another important part of hair rendering. All simulations are done on

a small number of guide strands. Tariq used a particle constraint system. All guide

strand hair vertices are simulated as particles. Three constraints are applied for

simulation: distance, collision and angular forces constraint. With the distance

constraint length of hair is maintained, which prevents hair from stretching and

compressing. The angular forces constraint maintains the shape of the hair. The

collision constraint keeps hair outside of collision obstacles and handles collision

between guide hair strands.

Those constraints are applied in parallel. Two constraints can be updated in parallel

only if they are independent of each other. In case of hair segments this means that they

share no vertex. The solution to be able to calculate constraints in parallel is to

subdivide independent constraints into two groups. Calculate the second group after the

calculations of the first group are finished.

Hair simulation is calculated entirely on the GPU. In Direct3D 11 the compute shader is

used for hair simulation. With the compute shader, code is easier to write and can be

faster. All constraints can be satisfied in a single function call using shared memory and

all vertices of a single strand are in the same thread group. For the Direct3D 10

implementation GPGPU1 pingponging technique is used. Constraints are calculated in

the geometry shader. The results are written to stream out and can be used at the next

rendering pass. Tariq also used a level of detail system for the simulation of the hair.

For high level of detail, simulation is done every frame and for low level of detail,

simulation is done once every n frames, where n is the number of frames without

simulation calculations.

One issue for simulation is that multi strand hair interpolation leads to hair penetration

into collision objects. For the solution of this problem it was important that no

simulations should be done on the interpolated hair strands. The solution for that

problem was to switch to single strand interpolation when it is detected that multi strand

1 general purpose computing on graphics processing units (GPGPU)

Real-Time Hair Rendering 2. Related Work

 9

interpolation leads to penetration of collision obstacles. Therefore, all hair strand

vertices, which penetrate collision obstacles and all vertices beneath penetration need to

change the interpolation mode. First, a pre-pass is executed, where all the interpolated

hairs are rendered to a texture. All vertices of an interpolated hair strand are rendered to

the same pixel. It is checked for each hair vertex if it collides with a collision obstacle.

If a collision occurs, the ID of the hair vertex is saved to the pixel. The ID is the number

of vertices that separate the current vertex from the hair root. If no collision happens,

output value is a large constant number. Result is a texture that encodes for each

interpolated guide strand weather any of its vertices intersect a collision object and at

which position of the guide strand the collided vertex is located. For the hair

interpolation this texture is used to decide if the interpolation mode has to be switched.

For a smoother transition a blending zone is used above the first intersection to blend

from multi strand to single strand interpolation.

A problem related with the hair strands is their thinness. This leads to unpleasant

aliasing effects when projected onto a screen because they are often much thinner than a

pixel. Solution for this problem is antialiasing or render thicker lines with transparency.

Light coloured hair is semi-transparent. Handling transparency would also mean an

improvement in visual quality. Antialiasing techniques, which can be used are super

sampled anti-aliasing (SSAA) or multi sampled anti-aliasing (MSAA). For SSAA the

scene is rendered in a higher resolution and down sampled. MSAA is implemented in

hardware and therefore very fast. MSAA performs on the pixel shader a depth/stencil

test independent of each other. For 4xMSAA the vertex shader is executed once and the

depth/stencil test is executed four times. In the demo a combination of 8xMSAA and

2xSSAA was used.

According to Tariq transparency can be done with alpha blending. It hides aliasing. The

problem is that the geometry has to be sorted from back to front. This means that every

line segment needs to be sorted. If sorting is executed, it should be done on the GPU.

Quick sort can be calculated on the GPU. Therefore line segments need to be partitioned

and sorted according to their distance to the camera. The geometry shader can be used

for this operation. A faster but more complicated algorithm is radix sort. Radix sort can

be computed on the GPU using CUDA. Depth sorting can be avoided with fake

transparency by dividing the hair into three subgroups and blending the result together.

Tariq recommended two approaches. For a performance oriented approach multi-layer

fake transparency and MSAA should be used. If quality is the main target alpha

blending with GPU sorted line fragments with MSAA is the better solution.

For hair shading it has also an effect that hair strands are very thin. Because of that

tangents are used instead of normals. Tangents have to represent the direction of a hair

strand segment and have to be smooth. Additionally, jitter and noise is used for tangents

Real-Time Hair Rendering 2. Related Work

 10

to break strong highlights. The used lighting model was [Kajiya and Kay 1989]. It is not

completely physical based. The diffuse term integrates lambertian surface along a thin

cylinder. The specular term is based on phong using thin cylinders. A physical based

alternative would be [Marschner et al. 2003].

Shadows were handled with deep opacity maps of [Yuksel and Keyser 2008b, 2008a].

These volumetric shadow maps are suitable for rendering semi-transparent hair. Deep

opacity maps is a real-time, artefact free algorithm, which uses a depth map and one

opacity map per layer. The algorithm needs three passes. The first pass is for the

creation of the depth map, which is rendered from the position of the light source. The

second pass is for the calculation of the opacity map layers. Three layers give a

sufficient result. Layer distances can be constant, powers of 2, Fibonacci or linear. The

third pass is to render the final image to screen. As an analysis of the source code of

[NVIDIA 2010b] has shown, deep opacity maps were not enabled for this demo. Only a

simple shadow map is generated, which handles shadowing of the hair for one light

source. However, there is source code of the implementation of deep opacity maps

available in [NVIDIA 2010b].

The demo reaches 15 frames per second (FPS) with an NVIDIA GeForce 8800 GTX, a

resolution of 1280x1024, 8xMSAA, 166 simulated strands, 10220 rendered strands and

1.6 million triangles.

2.2. NVIDIA HairWorks

Figure 4: Screenshot of NVIDIA HairWorks Viewer [NVIDIA 2014b]

At 26th June 2014 NVIDIA announced the release of their HairWorks tool chain for

real-time hair and fur rendering [NVIDIA 2014c]. This technology was previously

Real-Time Hair Rendering 2. Related Work

 11

presented by [Kim 2014] at GTC 2014. NVIDIAs HairWorks is an enhancement of the

NVIDIA Fermi Hair demo and was made ready for production. This technology was

used for the game Call of Duty Ghosts. Here the fur of the wolves and the dog Riley

was rendered and simulated with NVIDIA HairWorks. In The Witcher 3: Wild Hunt the

technology of NVIDIA HairWorks was used for the hair of the main character Geralt

and for other characters. Furthermore, the fur technology was applied to wolves and

monsters of this game [Burnes 2014]. HairWorks supports a Maya and 3ds Max model

pipeline. Additionally, NVIDIA has implemented the NVIDIA HairWorks Viewer tool

for iterating and fine tuning. The technology is still based on the tessellation engine and

includes view-space culling, back face culling, continuous distance LOD and

continuous detail LOD. Continuous distance LOD adjusts based on the distance of the

camera, hair density and thickness. Continuous detail LOD handles hair density and

thickness during close up moments. The simulation was also improved to be more

efficient. NVIDIA used therefore [Müller et al. 2012], which is based on [Kim et al.

2012]. For fur rendering they were able to render 500000 hairs out of 10000 guide hairs.

Main bottleneck here was the rendering engine. Tessellation stages hull shader and

domain shader had the highest execution time. Simulation took up only 10% to 20% of

the overall time. Shader performance had to be lowered for flexibility. This adds the

ability to pass additional attributes for more control over the hair style. The SDK is still

in closed beta and requires licencing to get access to the source code. NVIDIA is

working on the improvement of their technology and tools. They plan to enhance long

hair dynamics, body collision and hair interaction. They also need to adapt to engine

requirements like deferred shading support, motion blur, depth of field, ambient

occlusion and shader caches.

2.3. AMD TressFX

Advanced Micro Devices (AMD) TressFX is a high-quality real-time hair rendering and

physics system, which was first used for the game Tomb Raider in 2013. It was the first

hair strand based hair rendering system used inside a video game. At FMX 2013 [Engel

and Hodes 2013] presented about their integration of this technology inside the Tomb

Raider and how they applied hair rendering and simulation to Lara Crofts hair. TressFX

is based on [Yu et al. 2012]. Enhancements and improvements of this technology were

later done by [Bilodeau and Han 2013] and released as TressFX11 v2.0 [AMD 2013].

In 2014 an article about hair rendering [Martin et al. 2014] and an article about hair

simulation [Han 2014] were published in [Engel 2014].

Real-Time Hair Rendering 2. Related Work

 12

Figure 5: AMD TressFX11 v2.0 screenshot [AMD 2013]

With TressFX thousands of hair strands are simulated and rendered on the GPU. For

physics simulation on the GPU Direct Compute is used. The capabilities of shader

model 5.0 vertex shader is utilized for rendering. Lara Crofts hair had a spline count of

about 21042 hair strands with 16 vertices per strand. These source hair strands were

duplicated with an offset to achieve increased hair coverage. Flexibility is another key

feature of TressFX, which allows different hair styles and different conditions for the

hair. Hair strands are organized into primitive groups to support different configurations

and therefore different simulation behaviour of hair parts. The hair strand vertex count

has to be the same for all hair strands within a primitive group. Lara Crofts hair was

separated into bangs, cap, fringe and ponytail. For each hair strand position, tangent,

local/global quaternions, resting length and thickness were saved. The TressFX test

model is organized into four primitive groups, which are called hair free, hair front long,

hair pulled and hair tail. Hair tail has a vertex count of 14 vertices per hair strand and

the other primitive groups have a vertex count of 11 vertices per hair strand. The strand

count all together is 21809 hair strands.

Real-Time Hair Rendering 2. Related Work

 13

Figure 6: Rendering pipeline in Tomb Raider [Engel and Hodes 2013]

Figure 6 shows the render pipeline, which was used in Tomb Raider. The tessellation

engine and the geometry shader was not utilized. Geometry expansion was done in the

vertex shader. Here each hair segment is expanded into two triangles with a world-space

direction vector, which is perpendicular to the hair. This direction vector is calculated

with the cross product of tangent and view vector. A camera facing quad has at least a

width of one pixel in screen space. Similar to 2.1 an empty vertex buffer and index

buffer are used for the draw call to render the hair. The vertex ID is used to look up the

right vertex data, which is saved in a buffer or a texture. The vertex count of the draw

call is calculated dependent on the number of segments, which need to be rendered.

This number is multiplied with 6 because each segment will be expanded to two

triangles, which have a vertex count of 6. Output of the vertex shader is the position of

the vertex, a tangent, the left hair edge and right hair edge in screen space, and texture

coordinates. The left hair edge and right hair edge is needed for antialiasing calculations

inside the pixel shader.

Lighting was done according to [Kajiya and Kay 1989] and [Marschner et al. 2003].

TressFX uses an approximation of [Marschner et al. 2003] when rendering two specular

highlights. Additionally, a diffuse texture is used to support variation in hair colour.

Crystal Dynamics had two rendering profiles for wet and dry hair in Tomb Raider.

Antialiasing was not done with SSAA or MSAA. An image based solution was used

similar to geometric post-process anti-aliasing (GPAA) [Persson 2011]. Every hair

strand is anti-aliased manually. The location of the hair fibre edges are used to evaluate

each hair fragments distance with respect to these edges. The farther the pixel is inside

the hair fibre, the more the coverage value is increased. Is the pixel more than 0.5 pixels

Real-Time Hair Rendering 2. Related Work

 14

inside the hair fibre, the coverage value is set to 1.0. Is the pixel on the hair fibre edge,

coverage is 0.5. Coverage has the value of 0 when the pixel is more than half a pixel

outside of the hair fibre.

For self-shadowing a simplified version of deep shadow maps [Lokovic and Veach

2000] was used. First, hair splines are rendered as lines to a shadow map. Afterwards

depth in the shadow map is compared with the depth of the hair strand that is currently

drawn. The distance between the hair strand that is currently drawn and the hair strand

that is closest to the light determines how dark the shadow value of the current hair

strand is. The bottom hair receives darker shadow values and top hair receives brighter

shadow values. Each shadow value is stored in a per-pixel linked list (PPLL).

A PPLL was used for order independent transparency (OIT). The usage of a PPLL is

based on [McKee 2011]. Transparency helps to simulate the presence of thin individual

hair strands. For every pixel on the screen, which has one or more layers of hair, a

linked list is generated containing each overlapping hair fragment. Two passes are

executed. In the first pass, an A-buffer is filled with an unsorted linked list for each

pixel on screen that contains hair fragments. Therefore, all strands are rendered and

shaded in the pixel shader. In the second pass, the a-buffer of the previous path is

traversed and the data is sorted in a k-buffer for the topmost hair pixels. 8 layers are

sufficient enough for rendering. The influence of the 8th layer is barely over 1%. Sorting

is performed using the depth stored in the linked list node. At the end the nearest k

fragments are rendered in right order back to front. The remaining layer are just blended

in out of order. This technique for transparency only works if hair does not take up the

whole screen. Otherwise, it causes artefacts and the hair is not rendered correctly on

screen.

First requirement for the simulation of TressFX was performance. More than 20000 hair

strands needed to be simulated and the simulation should be possible within a game,

where available resources for hair simulation are limited. This is the main reason

because performance is more important than correct hair simulation. Other requirements

were more artist based. The simulation should maintain a predefined hair style.

Additionally, different conditions like wet and dry should be supported by the

simulation. Hair should also be stable, respond to wind, gravity and external forces, and

should allow collision handling with head and body. The simulation is based on [Han

and Harada 2012].

Three constraints were used to achieve these requirements: global shape constraint

(GSC), local shape constraint (LSC) and edge length constraint (ELC). GSC helps to

preserve the initial hair shape. Initial positions of each hair strand vertex is saved and

serves as the goal position of each particle. It is an easy and cheap solution and helps to

maintain the hair style. As a result, detail of the hair simulation is lost. LSC is to

Real-Time Hair Rendering 2. Related Work

 15

simulate bending and twist effects. The last constraint is ELC. This is a hard constraint

to simulate inextensible hair. ELC can be applied in parallel and does not converge for

fast movement. For the case of fast movement, the constraint is switched to adhoc

constraint, which updates only one vertex position at a time, starting from the root of the

hair strand. The problem with the adhoc constraint is that it can add extra energy to the

system. The adhoc constraint is only used when absolutely necessary.

Most of the simulation calculation is done on the GPU. The CPU is only needed at start

up to load hair data and compute state values, which also can be precomputed. On the

GPU the simulation loop is executed. First, gravity is applied and Verlet integration is

executed. Afterwards, GSC, LSC, wind and ELC are applied. Collision is handled at the

end of the loop. Shader code is separated into 5 shaders. The first shader is for gravity,

integration and GSC. In the second shader LSC is applied. Wind application and length

constraint is executed in the next shader. The fourth shader is responsible for extra

length constraint for erratic movement to handle fast movement of the hair. The final

shader does collision handling.

For simulation in Tomb Raider special cases needed to be handled. The simulation does

not work when hair is placed upside down like in the sac swing part of Tomb Raider. At

the first level Lara Croft is hanged on the ceiling upside down and needs to swing like a

sack to release herself from the chains. An additional hair geometry had to be designed

for this scene to give a realistic look. Other special cases were wet hair, weapon aiming

and cinematics. Different hair settings were used for these situations. Blending between

different hair settings was also possible. Settings were made for dry, mid wet, wet,

weapon aiming, upside down, upside down sac swing and special cinematic clamp

down.

The first version of TressFX only supported forward rendering. As a result, all hair

fragments were shaded before they were sorted. Many hair segments were shaded that

were not visible. At GDC 2014 [Thibieroz and Hillesland 2014] presented

improvements, which were implemented into TressFX. One improvement was to use

offline created vertex and index buffers to draw the hair indexed. Distance-based level

of detail (LOD) was also an improvement. The input line segments have a random

order. It is possible to render fewer lines with thicker fragments for lower level of detail.

Another improvement to save performance was the use of deferred shading. With

deferred shading hair fragments are shaded after the sort operation. This allows to use a

level of detail for shading. Only the top most hair fragments have a huge influence on

the final image quality. Tail fragments can be shaded with a simpler and faster shading

operation. There is a very little quality difference compared to full shading, but shader

LOD gives a much better performance. It was also presented why the tessellation engine

was not used in their implementation. Thibieroz and Hillesland claimed that isoline

Real-Time Hair Rendering 2. Related Work

 16

tessellation is not cost effective because lines have to be expanded in the geometry

shader, which is a major impact on performance. They also think that pure vertex shader

solution is faster and curvature is barely a problem. However, they did not back up their

claims with test results, which compares a tessellation based version with their version.

In conclusion, TressFX is fast enough to be used on next generation consoles like the

PlayStation 4 and Xbox One. The deferred shading implementation gives a significant

performance boost. There is still ongoing research to improve and expand the use of this

technology for fur, grass and hair rendering. Especially, the quality of the simulation

can be improved and combined in less shader stages.

Real-Time Hair Rendering 3. Requirements

 17

3 . R e q u i r e m e n t s

Since the hair rendering for this thesis is developed at the Research and Development

department of the Institute of Animation at Filmakademie Baden-Württemberg there are

multiple requirements and dependencies, which influence the implementation and the

technology, which was used.

First, the hair has to be rendered in real-time. The target is to be able to render the

virtual character with a frame rate of 60 FPS. The animation of the character needs to be

calculated and additional to the hair, face geometry, eyes, eyelashes, eyebrows, the

upper body and clothes needed to be rendered. All these assets share a frame time of

about 16.6 milli seconds. Therefore, it is crucial to use as less time as possible for the

rendering of the hair and at the same time keep or improve the visual quality.

High quality hair rendering consists of the generation of the hair, lighting, shadowing,

handling of transparency and antialiasing. All these factors needed to be evaluated

against the rendering times.

Level of detail was another important requirement. A target of the research project

SARA is to find out if children and teenager with ASD or ADHD read the emotional

states of the virtual character easier from a realistic character or an abstract character.

Different level of detail settings allow to render fewer hair strands with a thicker width.

Additionally, level of detail calculations should be evaluated for performance

optimization and improvement of the visual quality of the rendered hair.

It is not only important to be able to render multiple strands of hair on the GPU.

Another important requirement for this project was to be able to create multiple hair

styles and to optimize the work flow for the creation of the hair rendering engine. The

creation of the hair should be artist friendly. Generation of guide hairs should be

possible with Maya, 3D Studio Max and Cinema 4D.

Another dependency of this project is that the virtual characters need to be implemented

in the application framework Frapper [Helzle et al. 2014]. Shaders and the animation

system were implemented into Frapper using mainly Cg shader. Frapper is based on the

rendering engine Ogre3D [OGRE 2014], which supports in there released versions Cg,

OpenGL2, DirectX 9 and DirectX 11. Ogre3D has also an OpenGL 3+ renderer. This

renderer supports OpenGL shader above OpenGL 3, which also includes OpenGL 4

features. The problem of this renderer is that it was not officially released from the Ogre

developers.

For the hair generation on the GPU, DirectX 11 or OpenGL 4 needed to be used in

order to be able to utilize the tessellation functionality of modern graphics cards. Cg

supports DirectX 11, which would have been the best solution given that it permits to

Real-Time Hair Rendering 3. Requirements

 18

reuse the old Cg and at the same time uses the features of the tessellation pipeline. On

the other hand, Cg only supports OpenGL 4 for NVIDIA graphics hardware [NVIDIA

2014d]. Additionally, the OpenGL 3+ renderer of Ogre does not support Cg. Using

OpenGL 4 with Cg in Ogre was therefore no option. Another argument against Cg is

that NVIDIA stopped the support of Cg after the release of the Cg 3.1 Toolkit [NVIDIA

2014e]. For this reason, Cg is not a shader language to utilize future improvements of

graphics cards.

The decision to use OpenGL 4 was also influenced by the need to implement other parts

of the project including the non-photorealistic rendering algorithms in OpenGL.

After evaluation of the Ogre OpenGL 3+ renderer, which has proven to be a stable

version, it was decided to implement the hair rendering algorithms in OpenGL 4. This

meant that all previous written Cg shader for face, eye and cloth rendering had to be

translated into OpenGL shading language (glsl).

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 19

4 . O p e n G L T e s s e l l a t i o n R e n d e r i n g P i p e l i n e

Since the hair rendering is implemented in OpenGL 4 using its tessellation rendering

stages, a brief overview of the OpenGL 4 tessellation pipeline is provided together with

a more in-depth look at the tessellation stages. Khronos released the specification of

OpenGL 4.5 at 11th August 2014. The core profile [Khronos Group 2014a] and quick-

reference card [Khronos Group 2014b] gives in depth information about OpenGL 4.5.

Another great overview of the OpenGL render pipeline gives [Khronos Group 2014c].

Input Assembler

Vertex Shader

Fragment Shader

Tessellation Control
Shader

Rasterizer

Framebuffer

Tessellator

Tessellation Evaluation
Shader

Geometry Shader

Memory Resources
(Buffer, Texture,
Constant Buffer)

Stream Output

Vertex Buffer

V0 V1 V2 V3

Index Buffer

I0 I1 I2 I3 I4 I5

Render Target/
Final Output

Figure 7: OpenGL tessellation pipeline overview

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 20

Figure 7 shows a simplified overview of the OpenGL 4 rendering pipeline. Data can be

streamed in a vertex buffer and index buffer. The vertex buffer stores all specific vertex

data, which includes the position of the vertex. Optional attributes can be added to the

vertex buffer. Often normals, tangents, texture coordinates or blend weights are used as

input. It is up to the programmer to decide, which input values need to be used. The

index buffer helps to reduce the size of the vertex buffer because no duplicates have to

be saved in the vertex buffer. Its use is optional as objects can be drawn with and

without index buffer.

The programmable shader stages are vertex shader, tessellation control shader (TCS),

tessellation evaluation shader (TES), geometry shader and fragment shader. TCS, TES

and geometry shader are optional. TCS, tessellator and TES form the tessellation shader

stage. All shader stages have access to memory resources, which consist of textures,

buffers and constant buffers.

4.1. Vertex Shader

The vertex shader is the first

programmable shader stage of the

OpenGL tessellation pipeline. As input the

vertex shader gets a vertex stream. The

vertex shader is executed once per input

vertex of the vertex stream. Calculations

and transformation can be performed per

vertex. Additional data can be passed

through to the next programmable shader

stage. If tessellation is enabled, data will

be passed through to the TCS. Otherwise, data will be passed through to the pixel

shader. In the vertex shader geometric transformation has to be performed if the

tessellation stage is disabled. The resultant vertices of the input shader are assembled

afterwards into primitives. Additional fixed

inputs that can be accessed from the vertex

shader are gl_VertexID and

gl_InstanceID. gl_VertexID is the index

of the current vertex and gl_InstanceID is

the index of the current instance. OpenGL also

has predefined outputs for the vertex shader,

which is defined in an interface block without an

instance name. The most important one is gl_Position, which is the output vertex

data. This variable has to be used for the output data. gl_PointSize is only used for

Figure 8: Vertex shader

out gl_PerVertex
{
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
}

Figure 9: Vertex shader predefined output

Input Assembler

Vertex Shader

vertex data

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 21

point primitives. It describes pixel width and height of the point. The last predefined

output is the array gl_ClipDistance. Here the distance of the vertex to each clip

plane can be defined.

4.2. Tessellation Control Shader

Figure 10: Tessellation control shader

First, it needs to be defined how many control points will be used per primitive. The

maximum number of output control points is hardware dependent, but never smaller

than 32. Figure 11 shows the definition

inside the TCS, where patch_size is

the number of defined control points.

The TCS is executed once per tessellation primitive. Three different primitive types can

be handled by the tessellation engine: quads, triangles and isolines. Dependent on the

primitive type tessellation factors need to be

calculated. These are set in

gl_TessLevelOuter[4] and

gl_TessLevelInner[2]. For quads all

tessellation levels are used. Triangles only need

the first three outer tessellation levels and the

first inner tessellation level. For isolines only

the first two outer tessellation levels need to be set. Tessellation values are between 0.0

and 64.0. If all tessellation values are set to 0.0, the primitive is not rendered and all

shader stages after the TCS are not called for the current primitive.

Fixed input for TCS is gl_PatchVerticesIn, gl_PrimitiveID and

gl_InvocationID. gl_PatchVerticesIn gives the number of vertices in the

input patch. gl_PrimitiveID is the index of the current patch and

TCS output per control point:
[1.. GL_MAX_PATCH_VERTICES]
control points
TCS output per patch:
patch constant data
tessellation factors

TCS output:
tessellation factors

TCS input:
[1..GL_MAX_PATCH_VERTICES]
control points

Tessellation Control
Shader

Tessellator

Tessellation Evalution
Shader

layout(vertices = patch_size) out;

Figure 11: Output patch size definition

out gl_PerVertex
{
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
} gl_out[];

Figure 12: TES predefined output

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 22

gl_InvocationID is the index of TCS invocations. The tessellation stage is also

used to calculate per patch and per vertex attributes, which are passed through to the

TES. Per vertex attributes have to be outputted in an array, which has the same size as

the predefined number of output control points. Predefined output is the same as in the

vertex shader. It is defined as an array for every control point. It is not necessary to set

any of the predefined output data.

4.3. Tessellator

Figure 13: Tessellator

The tessellator, which is also called tessellation primitive generator, is a fixed-function

stage. Dependent on the tessellation primitive, spacing, primitive order and the defined

tessellation factors, the tessellator generates UVW coordinates values per tessellated

vertex and passes these values to the TES. Barycentric coordinates are calculated for

triangles. For quads and isolines UV coordinates will be generated by the tessellator.

Spacing can be defined as equal_spacing, fractional_even_spacing and

fractional_odd_spacing. Tessellation levels are defined in float values.

equal_spacing rounds up each float value to the nearest higher integer. Each edge

is divided into n segments of the same size. Range is from one to the maximum

tessellation value. fractional_even_spacing has range from two to maximum

tessellation value. The tessellation value is rounded up to the nearest even integer.

Segment sizes vary in this spacing scheme. It starts at level two with one subdivision.

This subdivision is represented with the original vertices of an edge and one new

generated vertex. With a tessellation value between 2.0 and 3.0, two new generated

points move from the first tessellated vertex to one of the original vertices. This scheme

is used to support a smooth transition between tessellation levels. It can be used for

distance dependent and view-space dependent tessellation.

TS input:
tessellation factors

TS output:
U V {W} coordinates

TS output:
topology list
(to primitive assembly to
prepare for rasterization)

Note: Tessellator
does not see
control points

Tessellation Control
Shader

Tessellator

Tessellation Evaluation
Shader

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 23

fractional_odd_spacing also generates non-uniform segment sizes. Its range is

from one to maximum tessellation level minus one and rounds up the tessellation value

to the nearest odd integer values. Only one segment is drawn when the tessellation

factor is between 0.0 and 1.0. Between tessellation value 1.0 and 3.0, two new vertices

are generated at the position of the original vertices, which move into the middle of the

line. fractional_even_spacing and fractional_odd_spacing is not

drawn when the tessellation factor is smaller than 0.0. The primitive order can be

changed between clockwise and counter clockwise.

4.4. Tessellation Evaluation Shader

Figure 14: Tessellation evaluation shader

The TES is used to calculate the final vertex position of the generated vertex. The TES

gets as input UV{W} coordinates from the tessellator. Additionally, tessellation factors,

per patch input data and per control point data are provided from the TCS for the TES.

In the TES tessellation options for the

tessellater can be defined. Figure 15 shows

the line of code, which has to be inserted

before the main function of the TES shader.

Parameters can be patch type (isolines, triangles, quads), spacing

(equal_spacing, fractional_even_spacing,

fractional_odd_spacing) or primitive ordering (cw, ccw).

Built-in inputs are gl_TessCoord, gl_PatchVerticesIn and

gl_PrimitiveID. UV{W} can be accessed with gl_TessCoord.

gl_PatchVerticesIn is the vertex count of the patch and gl_PrimitiveID is

TES input:
U V {W} coordinates

TES input:
[1..GL_MAX_PATCH_VERTICES]
control points

tessellation factors

TES output:
one vertex

Tessellation
Control Shader

Tessellator

Tessellation Evaluation
Shader

layout(param1, param2, ...) in;

Figure 15: Tessellation options definition

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 24

the index of the current patch. Tessellation factors can be accessed with

gl_TessLevelOuter and gl_TessLevelInner. The built-in per vertex input

from the TCS can be accessed with gl_in. The struct is except of gl_in the same as

in Figure 12. The built in per vertex output is the same as for the vertex shader.

4.5. Geometry Shader

Figure 16: Geometry shader

The geometry shader is executed either after the vertex shader or after the TES if

tessellation is activated. It uses a single primitive as input and outputs zero or more

primitives. Input and output primitives can be of different types. The geometry shader is

optimized for small geometry expansions. Theoretically, the geometry shader can be

used for tessellation, but this would not be very efficient. The main areas the geometry

shader is useful are layered rendering, transform feedback and transformation of

primitive types. With layered rendering it is possible to render one primitive to multiple

images or render targets. In transform feedback the captured primitive from the vertex

processing step can be saved to buffer. Vertex processing steps can include vertex

shader and the tessellation stage. Transformation of primitives is a general use case for

the geometry shader. One example for that is the expansion of lines to quads.

Rasterizer

Tessellation Evaluation
Shader

Geometry Shader

Stream Output

GS input:
vertices

GS output:
multiple vertices

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 25

Figure 17 shows how the input and output of the geometry shader is defined. For the

input of the geometry shader only the input primitive type has to be defined at

input_primitive. The available primitive types are points, lines and

triangles. For the geometry output output_primitive and vert_count

need to be set. Output primitives can be points, line_strip or

triangle_strip. Additionally, the maximum number of vertices, which can be

generated by the vertex shader, needs to be defined. This number of vertices is a

hardware limited factor defined by MAX_GEOMETRY_OUTPUT_VERTICES, which

has a minimum value of 256.

OpenGL 4 has a new instancing

feature available. The geometry

shader can be executed multiple times

per input primitive. Figure 18 shows

the declaration of geometry instancing. With num_instances it needs to be defined

how many times an input primitive will be executed. The maximum number is defined

with MAX_GEOMETRY_SHADER_INVOCATIONS and is at least 32.

Another feature of the geometry shader is layered rendering. Specific primitives can be

send to different layers of a layered frame buffer. This functionality can be used for the

creation of shadow maps.

Built-in input is gl_PrimitiveIDIn and gl_InvocationID.

gl_PrimitiveIDIn is the ID of the input primitive while gl_InvocationID is

the current instance ID. gl_InvocationID can be different to

gl_PrimitiveIDIn when instancing is activated. The built-in output is the same

interface as for the vertex shader and TES. Another built-in output is

gl_PrimitiveID. This output will be passed to the fragment shader and can be

freely defined. For layered rendering two additional built-in output values can be set.

gl_Layer defines the output layer and gl_ViewportIndex sets the output view

port.

// geometry shader input
layout(input_primitive) in;

// geometry shader output
layout(output_primitive, max_vertices = vert_count) out;

layout(invocations = num_instances) in;

Figure 18: Geometry shader instancing

Figure 17: Geometry shader input and output declaration

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 26

4.6. Fragment Shader

Fragment Shader

Rasterizer

Framebuffer

Render Target/
Final Output

FS input:
texture coordinates, normals, …

FS output:
pixel colour

Figure 19: Fragment shader

The fragment shader gets as input fragments, which are the result values of the

rasterizer. The fragment size is related to a pixel area. Multiple fragments are possible

per pixel. The fragment shader is executed once per fragment. Main purpose of the

fragment shader are lighting calculations, texturing and screen space calculations. The

fragment shader calculates the pixel colour values of the rendered image, which are in

the end saved to the frame buffer.

Built-in inputs are the 4D vector gl_FragCoord, the boolean value

gl_FrontFacing and 2D vector gl_PointCoord. The location of a fragment in

screen space is described with gl_FragCoord. The x value is the x position on the

screen, the y value is the y position, the z value is the depth and the w value is

1/W_clip, where W_clip is the interpolated w component of the clip-space vertex.

If the primitive is from a front face or from a back face is located in

gl_FrontFacing. gl_PointCoord describes the 2D location within in a point

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 27

primitive. The only point primitive in OpenGL is GL_POINTS. Points have square or

circle form. The coordinates are in a range from 0 to 1, where (0, 0) is the upper right

corner.

OpenGL 4.0 specific inputs are sample attributes, the array gl_ClipDistance, and

gl_PrimitiveID. When sample attributes are used the shader is forced to evaluate

per-sample. The use of samples should be avoided and only used when absolutely

needed. Sample attributes are gl_SampleID, gl_SamplePosition and

gl_SampleMaskIn. gl_SampleID is the ID of the current sample. The 2D vector

gl_SamplePosition supplies location of the current sample within a pixel area.

The array gl_SampleMaskIn defines the sample mask for multi-sampled rendering

and the array is as long as the supported sample count of OpenGL.

gl_ClipDistance provides the interpolated clipping space values. The ID of the

current primitive is stored in gl_PrimitiveID. If the geometry shader is enabled,

gl_PrimitiveID is the value the geometry shader provided.

OpenGL 4.3 expands the fragment shader built-in input with the layer number

gl_Layer and the viewport number gl_ViewportIndex.

Built-in outputs gl_FragDepth,

gl_SampleMask and fragment

colours. The fragment depth is

stored in gl_FragDepth. If

fragment depth is not set, the z value of gl_FragCoord is saved instead. The integer

array gl_SampleMask defines sample masks for the fragment shader when

performing multisampled rendering. Output buffers are the most important output of the

fragment shader. The output is a series of colours, which are called fragment colours

and stored as a framebuffer. A framebuffer is a collection of buffers and can be used for

rendering. There are three ways to assign fragment buffers. The first possibility to

declare a buffer as an in-shader specification with the layout modifier shown in Figure

20. An alternative is a pre-link specification. The OpenGL function

glBindFragDataLocation needs to be called with the arguments name of the

program, the colour number to assign and the fragment shader name. The last possibility

is to use auto assignment. However, auto assignment is not recommended because the

assignment is arbitrary.

4.7. Tessellation Primitive Isolines

Isolines are the tessellation primitive, which can be used best for hair rendering.

Because of this reason, this section describes how isolines are used within the

layout(location = 3) out vec4 diffuseColor;

Figure 20: In-shader specification

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 28

tessellation stage. Isolines have two parameters. The tessellation factor defines how

many copies of the line are generated and the detail factor defines in how many parts a

single line segment is separated. The tessellation factor is set in

gl_TessLevelOuter[0] and the detail factor is set in

gl_TessLevelOuter[1]. The maximum number of generated lines and line

subdivision is 64. Different spacing values have no influence on the tessellation factor.

The detail factor is influenced by spacing settings.

The first example in Figure 21 shows isolines generation with equal_spacing

setting. Detail tessellation factor 1.0 and detail factor 1.0 display the original input line

segment without any subdivisions. Is the detail factor set to 2.0, two line segments are

generated out of the input line segment. The tessellation factor defines how many copies

of the line are rendered. In this example three line copies were generated.

Isoline with tessellation factor 1.0 and detail factor 1.0

Isoline with tessellation factor 1.0 and detail factor 2.0

Isoline with tessellation factor 3.0 and detail factor 2.0

Figure 21: Isoline example equal_spacing

Figure 22 demonstrates how different detail factor settings influence the position of the

generated vertices inside the line segment with the spacing setting

fractional_even_spacing. Note that the generated line has at least one

subdivision. With fractional_even_spacing it is not possible to render the

original line without subdivision. In this example, it is shown how the new generated

vertices move from the middle to their final position with a detail factor between 2.0

and 4.0. Is the detail tessellation level greater than 4.0, four new vertices are generated

at the position of the two previous generated vertices. Two of these new generated

vertices move left to their initial position and the other two move right to their previous

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 29

position. At a detail factor 6.0 the vertices are arrived at their final position. Here all line

segments have the same size.

Isoline with tessellation factor 1.0 and detail factor 2.0

Isoline with tessellation factor 1.0 and detail factor 3.0

Isoline with tessellation factor 1.0 and detail factor 4.0

Isoline with tessellation factor 1.0 and detail factor 5.0

Isoline with tessellation factor 1.0 and detail factor 6.0

Figure 22: Isoline example fractional_even_spacing

The last spacing technique is fractional_odd_spacing. Here the input line can

be displayed without subdivision. It is shown how two new vertices are generated and

change their position between the detail factor 1.0 and 3.0. Is the detail factor greater

than 3.0, two new vertices are generated at the position of the last two generated

vertices. The new generated vertices as well as the previous two generated vertices

move in opposite direction until detail factor 5.0 is reached, where all generated sub

segments of the line have the same size.

Real-Time Hair Rendering 4. OpenGL Tessellation Rendering Pipeline

 30

Isoline with tessellation factor 1.0 and detail factor 1.0

Isoline with tessellation factor 1.0 and detail factor 2.0

Isoline with tessellation factor 1.0 and detail factor 3.0

Isoline with tessellation factor 1.0 and detail factor 4.0

Isoline with tessellation factor 1.0 and detail factor 5.0

Figure 23: Isoline example fractional_odd_spacing

Real-Time Hair Rendering 5. Implementation

 31

5 . I m p l e m e n t a t i o n

In this section all implemented features for the hair rendering system are described.

Main focus for this work was to implement a realistic looking hair rendering system

with a huge number of hairs and at the same time provide a level of detail system to

control the geometric detail as well as the needed processing power of the graphics card.

Hair simulation is not a focus of this work and has therefore not been implemented. But

the possibility for future implementation should still be provided.

The implementation of the hair rendering system is mainly based on Tariq’s work

described in section 2.1. Tariq’s implementation was chosen as a basis over AMD

TressFX, which was described in section 2.3, because Tariq’s work showed the better

results for hair rendering, uses a more realistic hair simulation, has a smaller amount of

guide hairs and utilizes the tessellation pipeline. Especially, the tessellation pipeline

allows more flexibility and control over the tessellated hairs for level of detail purposes.

The number of generated hairs, the subdivision of each hair segment as well as the

width of the hair can be manipulated per TCS call, which is called once per hair

segment of the guide hair. Tariq also implemented two different hair interpolation

techniques, which allow to show different hair styles. Additionally, there is support of

curly hair, random deviations and thinning. Overall, Tariq’s implementation allows

more flexibility over the final hair style with less guide hairs, which allows lower

memory consumption and less data has to be transferred from the CPU to the GPU.

AMD TressFX on the other side is more performance optimized, which would free up

calculation power for other algorithms of our character pipeline. However, the main

problem with AMD TressFX is that artefacts appear when the hair style takes up more

than the whole screen. Because our characters are rendered at a close up view, this is a

visual bug, which is unthinkable for our implementation. Therefore the only way to use

AMD TressFX is without the linked list ordering for hair geometry, which is the cause

of the visual artefacts.

Another reason to use an implementation that utilizes the tessellation pipeline is because

it also can be used to render face and cloth geometry more efficiently and with less

memory consumption. It is possible to implement a view-dependent level of detail,

which could be useful for the future of our character rendering pipeline. The tessellation

pipeline would also allow to decide how much geometry detail is generated per frame.

Therefore a version of our characters with less geometric detail would be possible. We

would also have the possibility to have a continuous transition between low poly

geometry and high detail geometry.

In the following subsections it is described how input data for hair rendering is

represented and used within Frapper. Afterwards, the implementation of hair strand

Real-Time Hair Rendering 5. Implementation

 32

interpolations techniques single strand, multi strand and the combination of both are

explained. In the next subsection it is evaluated how different hair guide sizes can be

used with single strand and multi strand interpolation, where multi strand interpolation

proves to be more challenging to get right. In the following subsections random

deviations, curly hair and thinning are explained. At the end of the implementation

paragraph, level of detail techniques as well as the used hair shading are shown.

5.1. Input Data

As input data of the hair guide hairs and a scalp mesh is needed. Guide hairs are a small

number of hairs, which define the form and density of the hair style. These guide hairs

can also be used for hair simulation. Each guide hair is saved as a separate submesh

within the Ogre mesh file. A guide hair is a line_strip, which includes vertex

buffer of all guide hair vertices. These vertices define the form of the hair. First vertex

is the root vertex and the last vertex of the line_strip is the tip vertex of the hair.

Two neighbouring vertices build a hair segment.

The scalp mesh is very important for multi strand interpolation to be able to pick the

neighbouring guide hairs. The scalp mesh is a mesh, which describes the scalp of the

character. Each vertex of the scalp mesh represents a root vertex of a hair guide. Best

practice is to place the root vertex of a guide hair at the same position as a vertex of the

scalp mesh. If that is not the case a distance variable was added to the system, which

allows a small distance between root vertex of the hair and scalp mesh vertex. With that

it is possible to use input data even when scalp mesh vertices and root vertices of guide

hairs are not exactly the same, which can simplify the work of the hair artist.

Figure 24: Guide hairs and scalp mesh (left), guide hairs and scalp mesh with rendered hair (right)

These guide hairs and the scalp mesh can be created with Maxon Cinema 4D, Autodesk

Maya or Autodesk 3DS Max and exported with the Ogre mesh exporter. For our

character Sara the hair style was created by Kai Götz within Cinema4D. First, a scalp

mesh needs to be modelled. Afterwards, all faces of the scalp mesh need to be selected

Real-Time Hair Rendering 5. Implementation

 33

to generate hair splines at the position of the scalp mesh vertices. Thereafter, the form of

the splines can be modified. For the export all guide hairs need to be saved in a separate

mesh and the amount of guide hair segments per guide hair need to be defined. The

lower the number of hair guide segments, the faster will be the rendering of the guide

hairs. However, the geometry detail and control over the final form of the hair will be

less. The data has to be exported first in Cinema 4D as an FBX file. This file needs to be

loaded into Autodesk Maya, where hair and scalp mesh can be exported with the Maya

Ogre exporter. Description about how to design and export hair styles have been

supported by Kai Götz [Götz 2014b, 2014a].

This generated guide hair is read in at start up. For every vertex of the scalp mesh a

corresponding guide hair is searched. When the guide hair is found, all vertices of the

guide hair are saved within a guide hair position texture, which can be accessed at

run-time by the TCS. Additional information that need to be saved to the guide hair

vertices are the size of the guide hair as well as the distance to the tip of the current hair

guide vertex. This additional data has to be saved to be able to support different hair

sizes. In the end, the index buffer of the scalp mesh can be used to select the right guide

hairs for multi strand interpolation.

5.2. Single Strand Interpolation

The idea of single strand interpolation is to use a single hair guide as input for the

interpolation of generated hair strands. Two different techniques were tried out for

single strand interpolation.

The first implementation is based on the Archimedean spiral algorithm [Rutter 2000].

For the implementation the parametric equation was used, where:

𝑥 = 𝑎 𝜑 cos(𝜑), 𝑦 = 𝑎 𝜑 sin(𝜑) (𝜑 ≥ 0)

For the implementation the glsl code in Figure 25 was used inside the TES for the

position calculation of the generated hair strand vertices.

// Parameters for the wisp shape
float r1 = g_rootRadius + g_tipRadius * gl_TessCoord.x;
float f1 = gl_TessCoord.y * 20 + 1;

// Order generated hair strands as Archimedean spiral
vec4 finalPosition = vec4(position.x + f1 * cos(f1) * r1,

position.y,
position.z + f1 * sin(f1) * r1, 1.0);

Figure 25: Archimedean spiral implementation glsl

With g_rootRadius and g_tipRadius can be controlled how hair strands are

tapered in direction of the hair tip. gl_TessCoord.x gives the position within the

hair segment while gl_TessCoord.y defines, which generated hair strand is called

Real-Time Hair Rendering 5. Implementation

 34

for the current invocation of the TES. The calculated values are used to offset the

previous position of the hair in x and z direction. Results are shown in Figure 26. For

the debug view on the left this implementation gives nice results. However with shading

the pattern of the spiral is visible. Additionally, offset in x and z direction is not the

perfect solution especially for hair strands at the side of the head.

Figure 26: Results Archimedean spiral

Figure 27: Rendering of coordinate frames for Fermi Hair Demo [NVIDIA 2010b]

Another approach that was tried out are random circular coordinates. Idea is to offset

the generated hair with random values along their coordinate frames. One coordinate

frame are three vectors, which define the plane the hair is offset at each vertex of the

guide strand. Figure 27 illustrates how this three vectors, which are perpendicular to

each other, look like for every vertex of the guide hair strand. One vector is calculated

Real-Time Hair Rendering 5. Implementation

 35

according to the tangent along the guide hair segment. This vector is used to calculate

the other two vectors.

Random circular coordinates are calculated with Box-Muller Transformation, which

guarantees a normal distribution for

𝑋1 = √−2 log (𝑈1) cos(2𝜋𝑈2)

𝑋2 = √−2 log (𝑈1) sin(2𝜋𝑈2)

when 𝑈1 and 𝑈2 are independently distributed within the range from 0.0 to 1.0 [Gentle

2003]. The offset result is saved within a texture and accessed in the TES at rendering

time.

//create the new position for the hair clump vertex
float radius = g_clumpWidth * (g_rootRadius*(1-lengthToRoot) +

g_tipRadius*lengthToRoot);
vec4 finalPosition;
finalPosition.xyz =
 position.xyz +
 yAxisCF * clumpCoordinates.x*radius +
 zAxisCF * clumpCoordinates.y*radius;

Figure 28: Random circular coordinates glsl implementation

The glsl code to use the random circular coordinates is shown in Figure 28. Variables,

which influence the form of the generated hairs are g_clumpWidth,

g_rootRadius and g_tipRadius. With g_climpWidth, the overall width of

the clumped hair is described. The maximum radius of the root and the maximum tip

radius can be set with g_rootRadius and g_tipRadius.

Figure 29: Result random circular coordinates

Result is a random distribution pattern, where no form is visible with shading. This

single strand interpolation technique is good to render clump based hair. It is easy to

implement for different hair sizes because interpolation pattern is only dependent on

one hair strand and one size. Another advantage of single strand rendering is its

performance. With single strand rendering less texture fetches and less calculations

Real-Time Hair Rendering 5. Implementation

 36

need to be performed compared to multi strand rendering. However, single strand

rendering alone does not give good enough visual results to render a hair style. It needs

to be combined with another hair interpolation technique for better results.

5.3. Multi Strand Interpolation

Multi strand interpolation uses three guide hairs for interpolation. Each TCS invocation

uses three vertices for input. These can be the three root vertices of the guide hairs or

three other vertices with the same distance to the root. These three vertices build

together a triangle on which a new generated vertex is placed dependent on random

generated barycentric coordinates.

To make this operation clearer a simple example is used with three hair guides, which

all have a vertex count of three and therefore two segments. For these three guide hairs

the TCS is called three times to read in the right vertex data on which barycentric

interpolation is performed. One call is for the root vertices, one call for the vertices in

the middle and another call for the tip vertices. After the vertices are read in the TCS,

the hair segment is tessellated dependent on tessellation and detail factor. In the TES the

calculation of the final vertex position for multi strand rendering takes place. For the

simplest case with tessellation factor one and detail tessellation factor one the TES is

called once for the root vertices, once for the middle vertices and once for the tip

vertices to calculate the final vertex position. Result is one generated hair, which form is

defined by the three input guide hairs. If the tessellation factor is increased more hairs

will be generated, which means more invocations for the TES. Different barycentric

coordinate values need to be used for each invocation of the TES with the same input

vertices. Figure 30 shows the result of the simple example.

Figure 30: Multi strand interpolation simple example

Real-Time Hair Rendering 5. Implementation

 37

The barycentric coordinates are calculated once at start up. Two random values between

0.0 and 1.0 are stored into a variable for the first two barycentric coordinates. If the sum

of these values is greater than 1.0, the new first barycentric value is the subtraction of

the old first barycentric value from 1.0 and the new second barycentric value is the

subtraction of the old second barycentric value from 1.0. In the end the first two

barycentric values are subtracted from 1.0 to calculate the third barycentric coordinate

value.

coord1 = Ogre::Math::RangeRandom(0.0, 1.0);
coord2 = Ogre::Math::RangeRandom(0.0, 1.0);

// sum has to be smaller than one to be useful for barycentric coordinates
if(coord1 + coord2 > 1)
{
 coord1 = 1.0 - coord1;
 coord2 = 1.0 - coord2;
}

pStrandCoordinatesFloat[writePosition++] = coord1;
pStrandCoordinatesFloat[writePosition++] = coord2;
pStrandCoordinatesFloat[writePosition++] = 1.0f - coord1 - coord2;

Figure 31: Calculation of a random barycentric value

One advantage of multi strand interpolation is that the generated hair covers the whole

scalp of the character. The left picture of Figure 32 shows how new generated guide

hairs are placed on top of the scalp mesh (blue quad). Additionally, the form of the

generated hairs is a mix out of the form of the three guide hairs, which lets every

generated hair look slightly different. The nearer a hair is to a guide hair, the more it

will look like this hair. Hairs, which are placed in the middle of the triangle are a

mixture of all three guide hairs.

Figure 32: Results multi strand interpolation

There are still two problems with multi strand interpolation. It is not possible to render

separated wisps and parting in the hair. First try to solve this problem, was not to render

hair segments if the distance between guide hair vertices or the angle between guide

hairs was too big. Unfortunately, this experiment did not give the wanted results. Figure

Real-Time Hair Rendering 5. Implementation

 38

33 shows the results of this attempt. There is a big bold area, were the parting should be

and the hair at the position of the separated wisp is just cut off.

Figure 33: Attempt to fix separate wisp and parting problem

5.4. Combination of Single Strand and Multi Strand Interpolation

The second attempt to fix the separate wisp and parting problem was based on how

Tariq implemented collision handling for multi strand interpolation. Her target was not

to have to do collision calculation for the generated hairs. But the multi strand

tessellation hair always goes through a collision object when this object is between the

used guide hairs. The idea of Tariq was to switch to single strand rendering when a

collision of the guide hairs with a collision obstacle occurred. Switching between guide

strands is also implemented for this solution. Instead of checking for collisions it is

checked how far are the guide strand separated from each other and how big the angle

between their tangents for their current hair segment are. The maximum distance and

the maximum angle are parameters, which can be changed to be able to get the wanted

result for the hair style. Figure 34 shows the result from two different perspectives. The

separate wisp problem is solved. For the parting of the hair it shows a better result than

the previous implementation. However, perfect parting cannot be achieved with this

approach. A solution would be to separate the scalp mesh into two parts, with additional

guide hairs for the parting area. This would allow to render a parting, with a defined

distance, dependent on the distance of the two scalp meshes.

Real-Time Hair Rendering 5. Implementation

 39

Figure 34: Result of single strand and multi strand interpolation combined

5.5. Handling Different Hair Guide Sizes

Target was to be able to have the possibility of different number of hair segments per

hair guide instead of having the same number of hair segments for every hair guide.

Since the number of hair segments is directly connected with the performance of hair

rendering and also the memory, which needs to be used to save the input data, reducing

the number of hair segments for short hair guides and at the same time provide enough

hair segments for long hair is reasonable.

As mentioned in section 5.2 different hair guide sizes can easily be handled with single

strand interpolation. Only the hair strand size as well as the current position of the hair

strand vertex relative to the hair tip needs to be saved. Unfortunately, for multi strand

rendering handling different hair strand sizes is not that trivial because three hair guides

are used as input. When those three hair guides do not have the same segment number

and therefore not the same vertex number, it needs to be handled, which vertices of the

hair guides are used for interpolation.

It was tried to handle this problem with three different approaches. The first idea was to

use the vertex number of the longest guide strand for the number of invocations for the

TCS. It should be interpolated the same way as with uniform guide hair sizes, until the

tip vertex of the shortest guide strand. This would mean that all operation stay the same

until the tip of the shortest guide strand is reached. For the following interpolations the

tip vertex of the shortest guide hair is used. When tip of the next guide hair is reached,

the tip vertex of this guide hair is used for the following interpolations until the tip of

the last guide hair is reached. This iteration did not work well because hair segments are

drawn into each other when the tip of one or two guide hairs is used for multiple multi

strand interpolations.

Real-Time Hair Rendering 5. Implementation

 40

Figure 35: Different hair sizes first iteration

In the second iteration the shortest guide strand vertex count was used for the number of

invocations of the TCS. Vertices were used in the same way until the tip of the shortest

guide strand was reached. This means that only the same number of vertices of the

longer guide strands is used for interpolation as the number of vertices of the shortest

guide strand. The rest of the vertices are ignored. The result hairs are drawn correctly.

However, this approach also causes a choppy transition from long to short guide

strands. It would be better if the transition between different sizes is smooth. Another

problem with this approach is that geometric detail of longer guide strands is lost.

Figure 36: Different hair sizes second iteration

One problem is that the number of vertices that are used for multi strand interpolation

has to be the same for every guide strand. With the first iteration it was tried to use all

available vertices. The second iteration on the other hand ignored vertices. The third

iteration is a middle ground between the first and second iteration. The same amount of

vertices will be ignored in iteration three as in iteration two. However, the selected

vertices, which are used for interpolation are different. It will always be used the root

and the tip vertex. Which vertices are selected in-between is dependent on the vertex

buffer size of the smallest guide hair. A delta step value is calculated to retrieve the next

used vertex.

Real-Time Hair Rendering 5. Implementation

 41

Figure 37: Different hair sizes third iteration

With the third iteration the length of the guide hairs is better represented and it allows a

smoother transition from short to long hairs. However, there is still some geometry

information lost. This is especially visible if the vertex count difference of the guide

hairs is big. If the vertex number of the guide hairs only differs in a small number, the

missing of geometry detail is only barely visible.

5.6. Expand Lines into Camera Facing Quads

After the generation of hair within the tessellation stage, the geometry shader is used to

expand the isolines into camera facing quads.

The geometry shader is designed for small geometry expansion and therefore efficient

for this operation. The reason to expand isolines into camera facing quads is to be able

to show hair, which changes is width when it gets nearer to the tip of the hair. This

functionality would not be possible with isolines because the width of isolines can only

be changed per draw call. Another reason is to be able to change the width of hair

dependent on the number of hairs that are generated. If less hairs are generated the

width of hair needs to be thicker. With this functionality level of detail for hair can be

implemented, which shows less hairs with a thicker width.

The geometry shader gets as input the two vertices of a line segment. First, the eye

vector and the tangent of the line segment is calculated. The normalized cross-product

of eye vector and tangent results into the offset vector, which is used to calculate the

four new vertices of the camera facing quad.

Real-Time Hair Rendering 5. Implementation

 42

vec3 tangent = pos2.xyz - pos1.xyz;
tangent = normalize(tangent);

vec3 eyeVec = (g_mInverseWorldMatrix * g_CameraPosition).xyz - pos1.xyz;
vec3 sideVec = normalize(cross(eyeVec, tangent));

vec3 width1 = sideVec * strandWidth[0];
vec3 width2 = sideVec * strandWidth[1];

// Offset positions to for drawing triangles in world space
vec4 pos11 = vec4(pos1.xyz + width1, 1);
vec4 pos12 = vec4(pos1.xyz - width1, 1);

vec4 pos21 = vec4(pos2.xyz + width2, 1);
vec4 pos22 = vec4(pos2.xyz - width2, 1);

Figure 38: Expansion of isolines into camera facing quads

5.7. Hair Form

With camera facing quads the form of the hair can be adjusted with two width values

per segment. These two width values have to be calculated inside the TES per hair

vertex and will be send to the geometry shader for the geometric expansion. For the

tapering of the hair a simple solution was used, which gives a good result for thin hair

and provides the option to define, where tapering of the hair begins.

Figure 39: Hair strand tapering (1, 2, 3 and 6 segments)

Result of this implementation is a hair form, which has the same width from root

position to the position, where tapering is defined to begin. From there a linear

interpolation is used, which reduces the width until it has reached the tip of the hair. At

the tip of the hair the width of the hair is 0. Figure 39 shows different hair tapering

settings for a hair strand that has the same base width.

Real-Time Hair Rendering 5. Implementation

 43

5.8. Hair Strand Tessellation

Hair strand tessellation is about how a single hair strand can be tessellated to get a

smooth curve at the end. The detail tessellation factor of the OpenGL tessellation stage

is needed for this operation. Tariq had a different approach for her hair strand

tessellation. She made it in a pre-calculation step within the geometry shader and wrote

the result to a buffer, which was used in the following render passes to render the

tessellated hair on the screen.

Our implementation of the hair rendering is done in a single draw call, which has the

advantage that for every single hair segment of the guide hair a different detail

tessellation factor can be applied. This is a crucial functionality to support dynamic

view dependent level of detail, which also is dependent on the shape of the hair strand.

Important for the used algorithm was that it works with a small amount of input vertices

on a per segment basis. Best solution for hair strand tessellation would be an algorithm

that just needs the two vertices of a hair segment. Two different techniques for hair

strand tessellation were implemented and evaluated.

5.8.1. Hermite Curve Interpolation

The first implementation was hermite curve interpolation [Pipenbrinck 2013]. For the

calculation of the result position the starting point 𝑃0, the tangent 𝑇0 at the starting

point, the end point 𝑃1 and the tangent 𝑇1 at the end point are needed. For hermite

curves the tangents define the smoothness or tightness of the curve. The variable 𝑡 is

defined between 0 and 1. It gives information about the current position in the line

segment. If 𝑡 is 0 it is the start position. If 𝑡 is 1 it is the end position. Each result

position can be calculated with the following equation:

𝐻(𝑡) = (2𝑡3 − 3𝑡2 + 1)𝑃0 + (𝑡3 − 2𝑡2 + 𝑡)𝑇0 + (−2𝑡3 + 3𝑡2)𝑃1 + (𝑡3 − 𝑡2)𝑇1

The hermite curve equation is executed in the TES. The input variable

gl_TessCoord.x exactly provides the information needed for the variable 𝑡. The

vertices for the start point and the end point are given. However, the tangents need to be

calculated at start up out of the hair guide vertices. For the calculation of the tangents

the formula for Cardinal splines can be used.

𝑇𝑖 = 𝑎 ∗ (𝑃𝑖+1 − 𝑃𝑖−1)

Result is the tangent 𝑇𝑖 at the vertex 𝑃𝑖, where 𝑃𝑖+1 is the next vertex and 𝑃𝑖−1 is the

previous vertex. In this formula, 𝑎 defines the tightness of the resulting curve. For the

special case, which is called Catmull-Rom spline, 𝑎 is set to 0.5. This results into

following equation.

𝑇𝑖 = 0.5 ∗ (𝑃𝑖+1 − 𝑃𝑖−1)

Real-Time Hair Rendering 5. Implementation

 44

Catmull-Rom splines were used for the implementation. For the calculation of the

tangents of the hair guides vertices, two special cases needed to be handled for the root

vertex and the tip vertex. The root vertex has no previous vertex. Instead the root vertex

is used for the previous vertex. For the tip tangent calculation the tip vertex is used

instead of the next vertex. The calculated tangents are stored in an additional texture and

read in the same way as the positions in the TCS.

Figure 40: Hermite curve interpolation with detail tessellation factor 1, 2, 16 and 64

Result is a smooth curve, which goes directly through all control points of the hair

guide. The problem with the calculation of hermite curves is that there is no

documented way how interpolated tangents can be calculated, which are mandatory for

the right hair shading calculation in the fragment shader. It is also not possible to

calculate the right tangents within the geometry shader because there is only access to

the vertices of the current generated line segment. An alternative approach needed to be

used, which also allows to calculate interpolated tangents for tessellated hair strands.

Real-Time Hair Rendering 5. Implementation

 45

5.8.2. Uniform Cubic B-Splines

Tariq used in her implementation uniform cubic b-splines, where she also interpolated

the tangents. Uniform cubic b-splines use four vertices as input. The following equation

shows how uniform cubic b-splines are calculated [Hamilton 2014].

𝑃(𝑢) =
1

6
[𝑢3 𝑢2 𝑢 1] [

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

] [

𝑃𝑖

𝑃𝑖+1

𝑃𝑖+2

𝑃𝑖+3

]

The variable 𝑢 is again the gl_TessCoord.x, which is defined between 0 and 1. The

main difference is that as input four vertices are needed. These vertices are the control

points of the generated curve. 𝑃𝑖 is the previous vertex, 𝑃𝑖+1 is the start vertex, 𝑃𝑖+2 is

the end vertex and 𝑃𝑖+3 is the next vertex. The root segment of the guide hair as well as

the last segment of the guide hair needs to be handled in a different way. For the root

segment, the previous vertex 𝑃𝑖 is the same as the start vertex 𝑃𝑖+1. For the tip segment

the next vertex 𝑃𝑖+3 is the same as the end vertex 𝑃𝑖+2. For tangent calculation the

following equation is used.

𝑇(𝑢) = [𝑢2 𝑢 1] [
0.5 −1.0 0.5

−1.0 1.0 0.0
0.5 0.5 0.0

] [

𝑇𝑖

𝑇𝑖+1

𝑇𝑖+2

]

The three tangents 𝑇𝑖, 𝑇𝑖+1, and 𝑇𝑖+2 can be calculated with:

𝑇𝑖 = 𝑃𝑖+1 − 𝑃𝑖

𝑇𝑖+1 = 𝑃𝑖+2 − 𝑃𝑖+1

𝑇𝑖+2 = 𝑃𝑖+3 − 𝑃𝑖+2

The matrix calculation form is efficient to calculate on the GPU. No pre-calculation of

tangents is needed. Tangents can be calculated inside the TES, which is especially

important for multi strand interpolation because the hair segment is an interpolation of

three hair segments and the tangent will be different dependent on the used barycentric

coordinates. The results are smooth curves and smooth tessellated tangents.

Real-Time Hair Rendering 5. Implementation

 46

Figure 41: Uniform cubic b-spline interpolation with tessellation factor 1, 2, 16 and 32

One problem is that uniform cubic b-splines cut off a small part of the start and the end

of the hair strand. The end parts do not really matter and the root part is so small that it

can barely be recognised when rendering hair with thousands of strands for a hair style.

Figure 42: Uniform cubic b-splines start and end segment

Real-Time Hair Rendering 5. Implementation

 47

5.9. Curly Hair

Realistic curly hair is hard to render. Guide hairs with a huge number of vertices are

needed to be able to render curly hair. In real-time there are limited resources and

number of guide hair vertices should be as small as possible. However, there is one way

to fake curly hair. The idea is to offset the calculated hair vertex in x and z direction

dependent on a generated curl deviations texture.

int numCVs = 13;
float sd = 1.5f;

int numSegments = numCVs - 3;
int numVerticesPerSegment = ceil(((m_NumberMaxOfHairSegments+1)*64) /
 float(numSegments));
float uStep = 1.0/numVerticesPerSegment;
Ogre::Vector2* CVs = new Ogre::Vector2[numCVs];
CVs[0] = Ogre::Vector2(0,0); CVs[1] = Ogre::Vector2(0,0);
CVs[2] = Ogre::Vector2(0,0); CVs[3] = Ogre::Vector2(0,0);
float x,y; int index = 0; int lastIndex = 0;

Ogre::Matrix4 basisMatrix = Ogre::Matrix4
(
 -1/6.0f, 3/6.0f, -3/6.0f, 1/6.0f,
 3/6.0f, -6/6.0f, 0, 4/6.0f,
 -3/6.0f, 3/6.0f, 3/6.0f, 1/6.0f,
 1/6.0f, 0, 0, 0
);

for (int i = 0; i < numberOfGuideHairs; i++)
{
 //create the random CVs
 for(int j=4;j<numCVs;j++)
 {
 BoxMullerTransform(x,y);
 x *= sd;
 y *= sd;
 CVs[j] = Ogre::Vector2(x,y);
 }
 //create the points
 for(int s=0;s<numSegments;s++)
 {
 for(float u=0;u<1.0;u+=uStep)
 {
 Ogre::Vector4 basis;

 basis = basisMatrix * Ogre::Vector4(u*u*u, u*u, u, 1);
 Ogre::Vector2 position = Ogre::Vector2(0,0);
 for (int c = 0; c < 4; ++c)
 position += basis[c] * CVs[s+c];
 // save position to texture/buffer
 }
 }
 lastIndex = index;
}

Figure 43: Creation of curl deviations for curly hair

The texture is generated at start up on the CPU. Adjustable input variables are the

number for control vertices numCVs and the deviation scale sd. The higher the number

Real-Time Hair Rendering 5. Implementation

 48

of hair segments per guide strand, the higher should be the number of control vertices

and the deviation scale. Dependent on numCVs random control vertices are generated

using Box-Muller Transformation. Notice that the first four control vertices are always

set to 0. This has the reason that vertices near the root of the hair are not influenced to

make sure that the hair still has the original position near the scalp. The number of

generated curl deviations per segment is dependent on the maximum tessellation factor

and the highest number of guide hair segments. For curl deviation, calculation per sub

segment a basis matrix is calculated and multiplied with four different control vertices.

These calculations are executed for each hair guide positions to ensure different curl

deviations per hair strand. For multi strand interpolation the index count of the scalp

mesh divided by three is used, instead of the hair guide count.

Figure 44: Curly hair results with no curl offset, low curl offset, increased curl offset and increased curl

offset with hair strand tessellation

The result is more curvy hair, which is slightly offset in x and z direction. A low curl

offset is doable with small amount of subdivisions. The higher the curly hair offset, the

more subdivisions of a hair segment is needed to still provide a smooth curve.

Therefore, good quality curly hair is still processing intensive to render on the GPU.

5.10. Thinning

Especially with single strand interpolation all hairs have the same overall length as the

corresponding guide hair. In multi strand interpolation the length of the hair is

dependent on the three input guide hairs. For some hair styles, hairs with the same

length can be the wished result. However, there are also hair styles, where hairs are

thinned. The result are hairs, which have a slightly different size. Hair dresser often use

this to make thick hair look thinner. Thinning is the functionality to support this feature

Real-Time Hair Rendering 5. Implementation

 49

for a hair style. The variable g_thinning, which is defined between 0.0 and 1.0 is

used to control the amount of thinning for the hair.

// calculate data and write to texture and array
m_strandLength = new float[m_numStrandVariables];

float minLength = 0.2f;

for (int i = 0; i < m_numStrandVariables; ++i)
{
 m_strandLength[i] = Ogre::Math::RangeRandom(0.0, 1.0) * (1-minLength) +
 minLength;
 pFloat[writePos++] = m_strandLength[i];
}

Figure 45: Random strand length generation

At start up a random generated texture is created with a predefined number of variables.

1024 random values have proven to be enough for this implementation. First the

minimum length is defined. Afterwards the random generated length values are saved

into a texture.

//thinning the hair lengths
float strandLengthPosition = float(iMasterStrand & (g_numStrandVariables-1)) /
 g_numStrandVariables;
float inLengthFrac = texture(TexStrandLength , strandLengthPosition).r;
// percentage of max length
float maxLength = 1.0-g_thinning + g_thinning*inLengthFrac;

float cutOfLength = hs_currentNumOfGuideHairSegments –
 (maxLength * hs_currentNumOfGuideHairSegments);

// add LOD to strand width
float tmpStrandWidth = g_strandWidth * g_strandWidthLOD;
// Make hair strand thinner from defined position to top
if(lengthToRoot > (maxLength * hs_currentNumOfGuideHairSegments))
{
 strandWidth = 0.0;
}
else if((hs_strandPosition - gl_TessCoord.x) <=
 (g_strandTaperingStart+cutOfLength))
{
 float ignoredPositions = hs_currentNumOfGuideHairSegments –
 (g_strandTaperingStart+cutOfLength);
 strandWidth = tmpStrandWidth *
 (maxLength - ((hs_currentNumOfGuideHairSegments –
 ignoredPositions - hs_strandPosition + gl_TessCoord.x) /
 (hs_currentNumOfGuideHairSegments - ignoredPositions)));
}
else
{
 strandWidth = tmpStrandWidth;
}

Figure 46: Thinning in TES and adjustment of hair tapering

In the TES the calculated, predefined strand length is read in and applied dependent on

g_thinning. The maximum length of the current hair strand is calculated. Dependent

Real-Time Hair Rendering 5. Implementation

 50

on the maximum length the tapering of the hair is adjusted. If the current length to the

root vertex is greater than the maximum length, the width of the hair strand is set to 0.

Figure 47: Thinning with value 0.0, 0.5 and 1.0 (top to bottom)

Real-Time Hair Rendering 5. Implementation

 51

5.11. Random Deviations

The look of the hair styles, the current hair rendering system generates, is too uniform

and too predictable. All hairs strands are perfectly aligned either clamp based with

single strand interpolation or evenly distributed with multi strand interpolation. All the

hairs strands look like as they were perfectly styled. Real human hair behaves

differently. It can often be observed that some hair strands are separated from the other

hairs strands. Especially at the edges of the hair style, single hair strands are visible,

which have a different form than the neighbouring hair strands. It almost never happens

that every hair follows the same form. There are very often a small amount of hairs that

have another form. Random deviations is an attempt to bring randomness into a hair

style to get a more realistic result, which can be better compared with a real-world hair

styles.

The implementation of random deviations is similar to the creation of curly hairs.

Adjustable input variables are the number for control vertices numCVs, the global

deviation scale sdScale and a deviation scale sd, which is set dependent on the

wished deviation of a hair strand. The main difference for random deviations compared

to curly hair is the added randomness. The deviation scale sd chances dependent on a

random value. With a probability of 60%, hairs are not modified at all. Only 5% of the

hair have high sd value, which leads to stray hair. 15% of hair are lesser stray hair. For

the remaining 20% small random deviations are only applied near the tips. For the offset

of the tips the thinning scale m_thinning is used. The different sd values are applied

for the control vertices creation. The offset position calculations in x and z direction are

calculated the same way as for curly hair and saved into a texture. For the hair strands

that were not modified, a zero vector is saved to the texture.

Real-Time Hair Rendering 5. Implementation

 52

float sdScale = 1.0f;

for (int i = 0; i < m_numStrandVariables; i++)
{
 float randomChoice = Ogre::Math::RangeRandom(0.0, 1.0);
 if(randomChoice>0.6)
 {
 float maxLength = (1.0-m_thinning) +

m_thinning*m_strandLength[i%m_numStrandVariables];
 int maxCV = floor(maxLength*numSegments)+ 2;

 //create the random CVs
 for(int j=2;j<numCVs;j++)
 {
 float sd;

 if(randomChoice > 0.95)//make some very stray hair
 sd = 1.2f;
 else if(randomChoice > 0.8)
 sd = 0.8f;
 else // some lesser stray hair (more deviant near tip)
 {
 if(maxLength>((numCVs-1)/numCVs) && j==numCVs-1)
 sd = 100.0f;
 else if(j>=maxCV)
 sd = 4.0f;
 else
 sd = 0.12f;
 }

 BoxMullerTransform(x,y);
 x *= sd * sdScale;
 y *= sd * sdScale;
 CVs[j] = Ogre::Vector2(x,y);
 }

 //create the points
 for(int s=0;s<numSegments;s++)
 {
 for(float u=0;u<1.0;u+=uStep)
 {
 Ogre::Vector4 basis;
 basis = basisMatrix *
 Ogre::Vector4(u * u * u, u * u, u, 1);
 Ogre::Vector2 position = Ogre::Vector2(0,0);
 for (int c = 0; c < 4; ++c)
 position += basis[c] * CVs[s+c];
 // save position to texture/buffer
 }
 }
 }
 else
 // no deviations, save 0 position to texture
}

Figure 48: Creation of random deviations

Result is added randomness to the hair, which makes the overall hair style more realistic

and believable. Figure 49 shows three different deviations settings of one hair style to

demonstrate the difference between hair without deviations and hair with deviations

enabled.

Real-Time Hair Rendering 5. Implementation

 53

Figure 49: Hair style (full hair and zoomed) with random deviation scale 0, 0.025 and 0.05 left to right

5.12. Level of Detail

LOD for the hair rendering system is an important part to adjust the amount of

generated hair and smoothness of the hair dependent on the available computing

resources of the GPU. LOD is often done distance dependent. For the research project it

made no sense to implement a distance dependent LOD because the camera distance

never changes. Instead a LOD slider was implemented, which has a value between 0.0

and 2.0. The interval from 0.0 to 1.0 adjusts the number of generated guide strands and

at the same time decreases the width of single guide strand with increased value. Is the

value between 1.0 and 2.0, the detail tessellation factor is increased, which improves the

smoothness of the hair. This LOD slider is also useful for the research project to be able

to render less detailed hair with a thicker width and therefore get a more abstract

representation of the hair style.

Real-Time Hair Rendering 5. Implementation

 54

Figure 50: Hair with LOD slider set to 0.1, 0.5 and 1.0

Result is a simple modification of the tessellation factors dependent on a slider value.

This works perfectly fine for the amount of generated hair. However, the amount of

needed processing power increases dramatically with increased detail tessellation factor.

The problem here is that all hair segments are subdivided in the same way even if the

hair is straight, where subdivision of hair does not give additional geometric detail.

There is a potential to save computing resources, without the loss of geometric detail.

5.12.1. Screen Space Adaptive Level of Detail

The idea of screen space adaptive level of detail (SSALOD) is to have a dynamic detail

tessellation factor for each hair strand segment, which is dependent on the shape of the

hair and the size of a hair segment in screen space. The calculation of the detail factor in

the TCS is done once per hair segment. The two vertices of the hair segment are

transformed into screen-space to get the size of the hair segment. According to this size

the detail tessellation factor is calculated. Additionally, the form of the hair strand is

taken into account for the calculation of the detail factor. As pre-calculation step, the

angle between the previous segment and the current segment, as well as the angle

between current segment and the next segment is calculated. The larger angle is then

used in the shader to influence the final detail factor.

Configuration options for SSALOD are the screen segment size of a hair strand

segment, the meaningful bend angle and the maximum bend angle. The meaningful

bend angle describes the angle above which detail tessellation should be applied. Is the

angle between hair segments smaller than the meaningful bend angle no subdivision

should be performed. The maximum bend angle defines the angle between hair

segments, where maximum subdivisions of hair segments should be performed. All

three options can be modified dependent on the available processing power and the

anticipated smoothness of the hair.

Result of this technique are hair strands with different tessellated hair segments. Screen

space size setting 15 gives a smooth result for the example hair strands with only a

small number of subdivisions per hair strand.

Real-Time Hair Rendering 5. Implementation

 55

Figure 51: Example of SSALOD with bend angle minimum 5, bend angle max 45 and hair segment

screen space size of 40, 15 and 4 from top to bottom.

5.12.2. Hair Culling

Another way to save computing resources is not to generate and tessellate hair strands,

which are not visible. These calculations can also be done in the TCS. The implemented

solution for this character rendering system uses the normals of the scalp mesh to decide

if hairs should be generated or not. A slider was added, which controls the amount of

culled hairs. If hairs are culled, which are visible to the viewer, is dependent on the

created guide hairs and it cannot be guaranteed that visible hairs are not culled.

Therefore, this slider needs to be adjusted carefully. For short hair it is less likely that

hairs are culled, which are visible. In this case the culling value can be set higher.

Real-Time Hair Rendering 5. Implementation

 56

Figure 52: Hair culling with culling scale 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0

5.13. Hair Shading

Previous sections were concerned with the geometric generation of hair. Another

important part of high quality hair is the shading of the hair. For hair shading

Filmakademie Baden-Württemberg has already implemented a hair shading algorithm

based on [Sadeghi et al. 2010; Zinke and Weber 2007]. In this section this implemented

shading algorithm is explained. This algorithm has been ported to glsl and is used for

the generated hair.

[Sadeghi et al. 2010] added to physically based

shading model artistic friendly controls. Their

implementation is based on [Marschner et al.

2003]. The hair is represented as a translucent

cylinder with tilted cuticles. These cuticles have

the effect that the single scattering of the hair has

three subcomponents. These subcomponents are

the primary highlight (R), the secondary

highlight (TRT) and rim light (TT). Figure 53

shows the different paths light can take through a

hair fibre. The primary highlight is from light

that is directly reflected. Therefore, the colour of the primary highlight is the same

colour as the light. The secondary highlight comes from light that was absorbed by the

hair fibre, reflected internally and appears next to the primary highlight. The secondary

highlight is nearer to the tip than the primary highlight. The colour of the hair influences

Figure 53: Hair model [Sadeghi et al. 2010]

Real-Time Hair Rendering 5. Implementation

 57

the colour of the secondary highlight. The rim light happens when light is transmitted

through the hair fibre. In a backlighting situation a bright halo is shown around the hair.

This effect is described with TT. Preferably, artists want to be able to modify the

primary highlight, the secondary highlight and the rim light.

vec3 lightDir = normalize(light_positions[i] – gs_worldPos).xyz;
float lightVec = dot(lightDir, gs_tangent);
float viewDepSpec = dot(gs_viewDir, gs_tangent);

float theta_h = asin(lightVec) + asin(viewDepSpec);
float cosPhi_i = dot(normalize(lightDir – lightVec*gs_tangent),
 normalize(gs_viewDir – viewDepSpec*gs_tangent));

// R (reflection) component
vec3 reflectionColor = clamp(
 _AM_c_R * pow(abs(cos(theta_h - _AM_s_R)) ,reflectWidth) , 0.0, 1.0);

// TRT component
vec3 transRefTransColor = clamp(
 _AM_c_TRT * pow(abs(cos(theta_h - _AM_s_TRT)),scatterWidth),
 0.0, 1.0);

// TT component
vec3 transTransColor = clamp(_AM_c_TT * max(0.0, cosPhi_i) *
 pow(cos(theta_h - _AM_s_TT) , transmitWidth), 0.0, 1.0);

// diffuse component
vec3 diffColor = clamp(_AM_d * sqrt(min(1.0, lightVec*lightVec)) +
(gs_strandPosition * tipColor + gs_strandPosition * rootColor), 0.0, 1.0);

fragColor.xyz += (diffColor + reflectionColor + transTransColor +
 transRefTransColor) * light_colors[i].xyz * lightPower;

Figure 54: Hair shading glsl code

Our implementation allows artist to change colour, strength, width and shift of the R,

TT and TRT component. Additionally, it is possible to change the diffuse, root and tip

colour of the hair. For every light in the scene the code of Figure 54 is executed.

Calculation is done based on the tangents of the hair. First, the light direction is

calculated with the position of the light and the position of the hair. Afterwards the

angles θ and φ are calculated. With these angles and the artist controlled input variables

the R, TT, TRT and diffuse colour are calculated. In the end all components are added

together for the final colour.

Real-Time Hair Rendering 5. Implementation

 58

Figure 55: Sara hair style with hair shading

Real-Time Hair Rendering 6. Character Rendering System Integration

 59

6 . C h a r a c t e r R e n d e r i n g S y s t e m I n t e g r a t i o n

The character rendering system is implemented in the open source framework of

Filmakademie Baden-Württemberg called Frapper. It uses Qt for the graphical user

interface and Ogre3D for graphics rendering including animations. Frapper is node

based. Different nodes inside Frapper provide different functionalities. Two tasks were

required to put the developed hair rendering system and the previous work that has been

done for character rendering together. The first task was to create a node, which

provides the functionality for the hair rendering system. This node is described in the

next subsections. The second task was to translate the Cg shader for character rendering

into glsl.

Character rendering has previously been done with a different node called

AnimatableMeshNode. This node inherits from GeometryAnimationNode,

which provides functionality to produce 3D geometry and play animations.

For the hair rendering system a custom node was created, which provides all adjustable

inputs and functionality. This node is called AnimatalbeMeshHairNode. It is used

to load the character geometry including the hair geometry. For each character there is

one mesh file created, which includes all geometric information for face, eyes, teeth,

clothes, eye brows, eyelashes, scalp mesh and guide hairs. Additionally, the node is

used inside Frapper to modify input parameter of the different geometries. For

AnimatalbeMeshHairNode input configurations were added to be able to modify

the hair style. This section gives an overview about all input variables and their effect

for hair rendering. The AnimatalbeMeshHairNode is subdivided in four tabs

called Hair Geometry, Hair LOD, Hair Lighting and Light Definition.

6.1. Hair Geometry

The first tab Hair Geometry is concerned with all input values, which directly

influence the form of the hair geometry. First input value is the Geometry File. Here

the character mesh with all the geometry data needs to be selected. Light Description

File is for a txt file, which includes the data of all light sources. With this file different

lighting settings can be loaded in the scene in a fast way without having to add and

place each individual light. Light description files have usually 8 to 16 lights included.

The next two string based input parameters are Scalp Mesh Name and Hair Guides

Name. These two inputs are important for the right selection of the scalp mesh and the

guide vertices. All geometry in the mesh file is stored as submeshes. When the mesh file

is selected and the mesh is loaded, these submeshes are searched for the scalp mesh and

all the hair guides. Submesh names must contain these strings, which were set as input

Real-Time Hair Rendering 6. Character Rendering System Integration

 60

of Scalp Mesh Name or Hair Guides Name, that the

AnimatalbeMeshHairNode is able to select the right

submeshes when the mesh is loaded. If the scalp mesh or

guide hairs are not found in the load mesh method, an error

will be logged and the mesh will not be rendered. It is also

important to keep in mind that the number of indices of the

scalp mesh have to be the same as the number of guide

hairs. Only then hair can be loaded and multi strand

interpolation is rendered correctly.

The following input value Distance Root Vertex to Scalp

Vertex is a slider to configure the distance the root vertex

of a hair guide can have to a scalp vertex and still be recognised as the corresponding

hair guide. This functionality was added for the case when the root vertices of the hair

guides are not exactly placed on the vertices of the scalp mesh.

Assigned Bone Name is the name of the bone the hair style is assigned to. This

assignment is done to support hair style movement relative to a bone when animation is

applied to it. Hair Style Initial Position defines the initial position of the hair style

relative to the bone position.

Single Strand is a check box to enable single strand

rendering. If this input parameter is not selected, the hair

will be rendered with multi strand interpolation. The

mesh needs to be reloaded before the different hair

interpolation method is applied. The slider

g_rootRadius, g_tipRadius and g_clumpWidth are

single strand interpolation specific parameters.

g_rootRadius defines the maximum radius around the

guide hair in which single strand interpolated hairs can

be generated. g_tipRadius has the same functionality

only for the tip of the hair. With modifying

g_rootRadius and g_tipRadius, it can be defined how

the distance of interpolated hair strands changes from

the root to the tip of the hair. It can often be observed

that hair moves together at the tip of the hair to build

combined, clump based hair strands. g_clumpWidth

scales the radius of g_rootRadius and g_tipRadius.

The following five parameter are used for single and

multi strand interpolation. The input parameter to

change the width of the hair is g_strandWidth. It defines the minimum width of the

Figure 56: Hair geometry part1

Figure 57: Hair geometry part 2

Real-Time Hair Rendering 6. Character Rendering System Integration

 61

hair. Tapering of the hair can be modified with g_strandTaperingStart. This slider

defines at which distance relative to the tip of the hair strand tapering starts. This

distance is counted in vertices. Next the input parameter g_curlyHairScale,

g_deviationHairScale and g_thinning are provided. These are the scale parameters for

curly hair, hair deviations and thinning.

The last three sliders are the input values to configure the combination of multi strand

and single strand interpolation. g_clumpTransitionLength defines how long the

transition phase between single and multi strand interpolation is. The distance of two

hair guides when single strand interpolation should be performed is configured with

g_maxDistance. If the distance between two hair guides is under this value, multi

strand interpolation will be used. g_maxAngle handles the maximum angle between

guide hairs. At the end there are two check boxes Render Guide Strands and Render

Scalp Mesh to enable and disable rendering of guide hairs and scalp mesh.

6.2. Hair LOD

The second tab Hair LOD provides all level of detail

settings, which can be applied to the hair rendering. First

is the Hair LOD Factor, which changes the level of

detail of the hair. Between 0.0 and 1.0 the hair number

and width is modified. Between 1.0 and 2.0 the detail

tessellation factor is increased. g_tessellationFactor is

the slider to control the number of generated hairs per

TCS invocation. g_detailFactor is the input value for

the number of subdivisions per guide hair segment. Hair

culling can be configured with the input value

g_backFaceCullingScale. The value 1.0 is here

maximum culling.

SSALOD can be enabled and disabled with Screen

Space Adaptive LOD. Is SSALOD enabled changes to the detail tessellation factor will

have no effect. SSALOD can be configured with Segment Screen Size, Bend Angle

Meaningful and Bend Angle Max Tessellation. Segment Screen Size defines the size

a hair segment should have in screen space. Dependent on this value the detail

tessellation factor is calculated. Bend Angle Meaningful and Bend Angle Max

Tessellation are configurations for form dependent tessellation. They define the angle

between hair segments, which is meaningful enough to start hair segment subdivision

and the angle were the maximum amount of subdivisions should be applied.

Figure 58: Hair LOD

Real-Time Hair Rendering 6. Character Rendering System Integration

 62

6.3. Hair Lighting

Hair Lighting is concerned with all the hair shading

input values. Basic colours of the hair, which can be

defined are rootColor, tipColor and diffuseColor.

These colour values set the hair colour of the hair roots,

the hair colour of the hair tip and the overall diffuse

colour of the hair. The next input parameters are

subdivided into parameters to change the R, the TRT

and the TT component of the hair. For each of these

components the colour, strength, width and shift can be

modified. The input values for R start with reflect, the

input values for TRT start with scatter and the input

values for TT start with transmit.

6.4. Light Definition

The last tab is Light Definition, which consists of all

lighting specific values. The position of the lights can be

modified with Light Scale Pos. This value scales the

position of the created point lights. The intensity of the

light can be set with lightPower and the number of used

lights for the geometry is set with Number of Lights.

The rendering performance of the hair is directly

dependent on the number of lights that are set in the scene. The more lights are used the

higher is the fragment shader load for hair rendering.

Figure 59: Hair Lighting

Figure 60: Light Definition

Real-Time Hair Rendering 7. Hair Rendering Performance Analysis

 63

7 . H a i r R e n d e r i n g P e r f o r m a n c e A n a l y s i s

In this section the developed hair rendering system is evaluated for performance and

compared against the NVIDIA Fermi Hair Demo [NVIDIA 2010b] and AMD

TressFX11 v2.0 [AMD 2013]. Graphics card, which was used for this test is a NVIDIA

Geforce GTX 580 [NVIDIA 2010a]. The CPU of the test hardware was a 6 core Intel

Xeon X5660 with a core speed of 2.80 GHz [Intel 2010]. NVIDIA Nsight 4.1 [NVIDIA

2014a] and Fraps 3.5.99 [Beepa 2013] functioned as profiling tools. NVIDIA Nsight

allows to profile frames and to analyse single draw calls. With this tool 5 frames were

captured per test application and the average result is taken for comparison. Fraps can

record the frame rate of the application over a predefined time and gives as result the

lowest, highest and average frame rate. The frame rate of all three applications were

recorded for 60 seconds.

Application Frapper Hair NVIDIA Fermi Hair AMD TressFX11 v2.0

Guide hairs 335 166 21809

Rendered hairs 37632 <29440 65427

Hair segment

count
30 between 6 and 40 13 or 10

Hair segment

subdivision
2 2 not supported

Lighting 1 point light 1 directional light 1 point light

Shadows not supported disabled disabled

Simulation not supported disabled disabled

Resolution 1284x1058 1024x768 1024x768

Table 1: Test application setup

The setup of the three applications is shown in Table 1. Frapper Hair is our

implemented hair rendering system. Sara’s hair style was used for this test. Hair culling

was set to 0.3. Her hair style is the most similar hair style to the ones of the NVIDIA

Fermi Hair and the AMD TressFX11 v2.0 demo. It was tried to make the conditions as

near as possible. The NVIDIA Fermi Hair demo and AMD TressFX11 v2.0 were not

modified in code. For NVIDIA Fermi Hair demo scene rendering, simulation and

shadows were disabled. The hair render count for the NVIDIA demo cannot precisely

be counted. Reason for this is that Tariq implemented in her demo a scalp texture,

which influences the maximum amount of rendered hair dependent on the position of

the generated hairs to save resources. The generated hairs are less than 29440 hairs,

which is the maximum amount of generated hairs for the provided hair style input data.

In the AMD TressFX demo it was possible to disable the HUD, simulation and self-

shadowing. The 21809 hair strand input data is copied twice to triple the amount of

rendered hair per frame.

Real-Time Hair Rendering 7. Hair Rendering Performance Analysis

 64

Figure 61: Test application setup NVIDIA Nsight

The test application setup for test with NVIDIA Nsight is shown in Figure 61. The hair

styles in all demos were positioned once and 5 different frames were captured, which

were analysed in NVIDIA Nsight. Only draw calls for hair rendering were recorded and

had an impact on the results. Node that for our implementation the hair shading is not

rendered correctly. This result of the hair shading only happens in the NVIDIA Nsight

graphics debugger. If Frapper hair rendering is started in a standalone application the

hair shading is correct.

Application Frapper Hair NVIDIA Fermi Hair AMD TressFX11 v2.0

GPU time

avg/min/max [μs]
17989/17977/17993 4676/4556/4695 9992/9990/9993

CPU time

avg/min/max [μs]
128/107/615 <1/<1/<1 <1/<1/<1

Number draw calls 1 6 1

Primitives 17640 1252 1201764

Shaded pixel count

avg/min/max

4739814/4699632/

4758640

2896233/2877888/

2908336

3819635/3786960/

3844624

Shaded pixel coverage

avg/min/max
347% / 344% / 349% 365% / 362% / 367 % 485% / 481% / 488%

Bottleneck top three

average %

36.46% Rasterizer

32.11% L2-Cache

10.47% Blending and

Z-Buffer

33.49% Rasterizer

31.22% L2-Cache

8.20% Blending and

Z-Buffer

60.20% Rasterizer

24.04% Shading

18.78% L2-Cache

Utilization top three

average %

31.42% Shader

25.84% Frame Buffer

16.33% Rasterizer

26.92% Shader

22.09% Frame Buffer

13.62% Rasterizer

41.13 % Shader

19.37% Frame Buffer

12.04% Z-Culling

Shader Type 0% Vertex

4.27% TCS

34.08% TES

13.06% Geometry

48.55% Fragment

0.01% Vertex

0.32% Hull

19.00% Domain

22.64% Geometry

57.87% Pixel

12.90% Vertex

0.0% Hull

0.0% Domain

0.0% Geometry

87.42% Pixel

Table 2: Results NVIDIA Nsight profiler

The Frapper hair implementation is less performance optimized than the other two test

applications. Interesting is the spend CPU time. Only the measurements of the CPU

time suffered from huge differences in the results. Therefore the slowest and fastest

Real-Time Hair Rendering 7. Hair Rendering Performance Analysis

 65

measurement was ignored for the average CPU time. The draw call of Frapper hair uses

128 μs render time, while the other application are under 1 μs for their spend CPU time.

AMD TressFX11 v2.0 is the application, which renders the hugest amount of hairs,

while using the highest number of primitives per draw call. The NVIDIA hair demo

uses the smallest amount of primitives. Hair rendering is done in 6 draw calls. The

shortest time took the NVIDIA Fermi Hair demo to render. However, the rendered hair

count is smaller than for the other test applications, which is the main reason for the

short GPU time. Main bottleneck for all three implementation is the rasterizer. This is

no surprise because there is a huge number of triangles that need to be rasterized. The

second highest bottleneck of AMD TressFX11 v2.0 is shading. If it is possible to do

more shading optimizations, performance can be improved further. However, it better

utilizes the L2 cache compared to the other implementations.

Figure 62: Test application setup Fraps

The second test was performed with Fraps. The frame rate was recorded over the time

duration of 60 seconds. Results of this test are the average, minimum and maximum

frame time.

Application Frapper Hair NVIDIA Fermi Hair AMD TressFX11 v2.0

Frames per second

avg/min/max
62.983/62/64 212.517/209/215 92.833/91/95

Table 3: Results Fraps profiling

This test shows that NVIDIA Fermi Hair takes 43.68% of the time it takes to render

AMD TressFX11 v2.0. The Frapper hair rendering still cannot compete with the other

hair rendering algorithms, but has a slight improvement for the average rendering time.

Afterwards, more tests were made for the Frapper hair rendering with different detail

tessellation factors and SSALOD activated. The test shows, that the increase of the

detail factor reduces the performance drastically. SSALOD gives for the test view good

results, which are near the render time of the detail factor. The highest visual difference

is between detail factor 1 and detail factor 2 for the test view. In Figure 63 these

differences are still hard to recognize. Especially the hairs at the edge of the hair style

are smoother. Higher detail factors only make sense for this hair style when the camera

has a smaller distance to the hair. Node that for this setting, the hair style with SSALOD

Real-Time Hair Rendering 7. Hair Rendering Performance Analysis

 66

enabled and a screen segment size of 15 is near the performance of the test with detail

factor 1.

Figure 63: Comparison Sara hair style detail factor 1 (top left), detail factor 2 (top right), detail factor 64

(down left) and SSALOD with segment screen size 15 (down right)

Figure 64: NVIDIA Fermi hair demo setup Fraps detail factor 1 (left) and detail factor 64 (right)

Real-Time Hair Rendering 7. Hair Rendering Performance Analysis

 67

Settings Frames per second avg/min/max

Sara Gunnar NVIDIA Fermi

Detail factor 1 125.450/125/126 173.200/172/174 377.567/374/381

Detail factor 2 62.983/62/64 78.717/78/79 233.483/230/234

Detail factor 16 11.467/11/12 13.800/13/14 32.717/32/34

Detail factor 32 6.283/6/7 7.667/7/8 16.483/17/16

Detail factor 64 3.300/3/4 4.033/4/5 8.250/8/9

SSALOD, segment screen size 40 109.617/109/110 172.417/172/173 not supported

SSALOD, segment screen size 15 109.050/108/110 172.467/172/174 not supported

SSALOD, segment screen size 4 93.633/93/94 165.367/165/167 not supported

Table 4: Sara/Gunnar/NVIDIA Fermi hair style results Fraps profiling with different tessellation settings

For comparison with a short hair style, another test was done in Fraps with the Gunnar

hair style. The Gunnar scalp mesh has a face count of 782, which results into a

maximum of 50048 generated hairs. The settings of the hair are the same as for Sara’s

hair style. Only the maximum distance and the maximum angle for transition into single

strand interpolation had to be adjusted for better visual results. The hair segment count

is 24. Especially, for short hair the number of used segments could be reduced to

optimize performance further.

Figure 65: Comparison Gunnar hair style detail factor 1 (top left), detail factor 2 (top right), detail factor

64 (down left) and SSALOD with segment screen size 15 (down right)

Real-Time Hair Rendering 7. Hair Rendering Performance Analysis

 68

The result of Gunnar hair style test is an increased performance compared to Sara’s hair

style. This is an interesting result because for Gunnar 18768 hair segments and for Sara

only 10050 hair segments need to be processed. The reason for this increased

performance is the visual size of the hair. Sara’s hair style covers more screen space

than Gunnar’s hair style. This leads to more pixels that need to be shaded.

To support the previous claim another test was done with NVIDIA Nsight using this

time the Gunnar hair style. The results are shown and compared to the result of the Sara

hair style test in Table 5. First, less pixels are generated on screen. The Gunnar hair

style has only 51.80% of the shaded pixel count of the Sara hair style. This leads to a

smaller shaded pixel coverage, which reduces load on the rasterizer. Shader type

distribution also changes slightly. There is less work to do for the TCS, TES and

fragment shader. The geometry shader load increases 2.71%.

Application Frapper Hair Sara Frapper Hair Gunnar

GPU time avg/min/max [μs] 17989/17977/17993 12629/12621/12634

CPU time avg/min/max [μs] 128/107/615 121/104/122

Number draw calls 1 1

Primitives 17640 18768

Shaded pixel count

avg/min/max
4739814/4699632/4758640 2455338/2442640/2470128

Shaded pixel coverage

avg/min/max
347% / 344% / 349% 180% / 179% / 181%

Bottleneck top three average % 36.46% Rasterizer

32.11% L2-Cache

10.47% Blending and Z-Buffer

33,67% L2-Cache

14,95% Rasterizer

9,09% Z-Culling

Utilization top three average % 31.42% Shader

25.84% Frame Buffer

16.33% Rasterizer

28.77 Shader

18,71% Frame Buffer

10,44% Z-Culling

Shader Type 0% Vertex

4.27% TCS

34.08% TES

13.06% Geometry

48.55% Fragment

0% Vertex

4.21% TCS

31.98% TES

15.77% Geometry

48.0% Fragment

Table 5: Sara/Gunnar results NVIDIA Nsight profiler

Real-Time Hair Rendering 7. Hair Rendering Performance Analysis

 69

Figure 66: Test application setup NVIDIA Nsight Sara and Gunnar hair style

Both hair styles of Sara and Gunnar were compared with the NVIDIA Fermi hair

implementation in respect to performance for hair segment subdivision. NVIDIA Fermi

hair demo gives the better results for uniform subdivision of the hair segments. Frapper

hair rendering can keep up with the NVIDIA demo when SSALOD is enabled. For a

small amount of subdivisions the NVIDIA Fermi hair demo is the better solution, but

for higher detail SSALOD gives the better performance.

Overall, the ability to modify detail tessellation per fragment comes with a cost, which

can be compensated with SSALOD. The Frapper hair rendering has still possible areas

of improvements. First, the amount of hair segments can be reduced to increase

performance. Nevertheless, this comes with reduced detail of the hair. Shader code can

still be optimized to make better use of the L1 cache and therefore reduce the L2 cache

bottleneck. On the plus side the Frapper hair rendering system allows smooth high

quality hair at close up view of the hair. SSALOD can also increase the frame rate with

reduced hair segments. AMD TressFX11 v2.0 is the fastest implementation. It has the

cost of larger hair guide counts, less controllability about the level of detail and does not

allow the subdivision of hair segments. The NVIDIA Fermi hair demo allows to save

performance with the limitation of hair strand generation in predefined areas. For small

hair segment subdivision it gives the better performance. But it is not possible to change

the subdivision for every hair segment independently. This functionality allows the

Frapper hair rendering and is therefore the better solution for rendering smooth hairs at

close distances.

Real-Time Hair Rendering 8. Conclusion

 70

8 . C o n c l u s i o n

Result of thesis is an implementation of a hair rendering system using the OpenGL 4

tessellation pipeline. The hair rendering system was integrated into the framework

Frapper and utilizes the Ogre OpenGL 3+ renderer. Single strand and multi strand

interpolation was combined in one draw call to generate a more realistic hair look with

additional artistic control. The developed algorithm can handle hair guides with

different hair segment count. The tapering of the hair is adjustable. Additional features

are curly hair, random deviations and thinning. Furthermore, a level of detail system has

been implemented to cull hair, which is not seen and to adjust hair segment subdivision

dependent on the form of the hair and size of a hair segment projected into screen space.

This level of detail system is called SSALOD. The rendered hair uses an artist friendly

hair shading algorithm, which allows artist to modify the appearance of primary

highlight, the secondary highlight and rim light.

Figure 67: Character Sara with new hair rendering system

The developed hair rendering system was integrated into the Frapper character

rendering pipeline converting the existing Cg shader into glsl shader. As test character

served the Sara character. In the future the Animation Institute of Filmakademie BW

Real-Time Hair Rendering 8. Conclusion

 71

plans to include this hair rendering system for their other characters Gunnar, Nikita and

Hank.

Performance of this algorithm was compared against [AMD 2013] and [NVIDIA

2010b]. The results are that the AMD’s and NVIDIA’s algorithm have the better

performance for hair styles with hair segments, which are either not subdivided or only

subdivided in a small number. The developed SSALOD algorithm has its strength at

close up views to render smooth hair, where a higher subdivision of hair segments is

necessary.

8.1. Future Work

There are many areas were the hair rendering algorithm could still be improved. One

part that was not implemented is shadowing of the hair. Here deep opacity maps could

be implemented [Yuksel and Keyser 2008a]. From every light source first a depth map

is rendered. Out of this depth map, opacity layers are generated. The depth map and the

opacity layers are used for the final rendering of the hair. Deep opacity maps have the

problem of two additional render passes per light source. This can lead to a performance

problem when multiple lights are used.

Another feature, which has not been implemented was hair simulation. If hair

simulation is integrated the SSALOD algorithm will need to be adapted for hair form

dependent LOD calculations. The angle between hair segments is calculated once for

the static hair guides. These angle calculations would need to be updated before every

rendered frame. Making these calculations on the GPU should be reasonably fast.

Further performance optimizations could be done for the hair rendering algorithm. First,

it needs to be evaluated if and how the L1 cache can be better utilized to increase

performance. It could be evaluated if the use of OpenGL or Ogre has to do with the

performance loss. For the future it could also be tested if future graphic APIs like AMD

Mantle [AMD 2014] or DirectX 12 [McMullen 2014] have a positive effect on the

performance of the developed hair rendering system.

The rendered hair count was 37632. For a more realistic hair style more hairs would

need to be rendered. Up to 150000 rendered hair is the target. With improved graphic

cards and further performance optimizations this targeted hair count should be possible.

Another area of improvement is artistic control of the hair. Especially, when the greater

part of the hairs are generated, control for the hair style is limited. For our hair

rendering system artists can control the basic shape of the hair style with guide hairs. In

Frapper it is possible to modify the width of the hair, curly hair scale, random deviation

scale and thinning scale to adjust the appearance of the hair. Translation form multi

strand interpolation to single strand interpolation can also be influenced by the artist.

Real-Time Hair Rendering 8. Conclusion

 72

One problem that has not been solved is how to make partings. Separate hair parts

would be the solution without changing the developed algorithm and also would the

best solution for performance. Further research on how to give artist more

controllability about the generated hair style is an important area for real-time hair

rendering.

For hair shading only single hair scattering was implemented. For improved visual

quality in hair rendering multiple scattering of the hair has to be taken into account.

There has already been done research about multiple hair scattering in real-time by

[Zinke et al. 2008]. Their GPU implementation is based on deep opacity maps and uses

also a depth map for shaping the depth layers. The used data per layer is increased. For

4 layers 8 textures are needed to store the data. They achieved with their real-time dual

scattering algorithm 14 frames per second. Not yet ready for real-time applications, but

a step in the right direction.

In conclusion, it is possible today to render realistic hair on modern graphic cards and

on current generation consoles like the Xbox One and PS4. The realism of real-time hair

rendering can still be improved further for rendered hair count and visual quality.

Real-Time Hair Rendering 9. References

 73

9 . R e f e r e n c e s

AMD. 2013. TressFX11 v2.0 (Nov. 2013). Retrieved July 24, 2014 from

http://developer.amd.com/tools-and-sdks/graphics-development/amd-radeon-sdk/

AMD. 2014. Mantle White Paper (Mar. 2014). Retrieved September 24, 2014 from

http://www.amd.com/Documents/Mantle_White_Paper.pdf

Beepa. 2013. FRAPS game capture video recorder fps viewer (2013). Retrieved

September 22, 2014 from http://www.fraps.com/

Bilodeau, Bill and Han, Dongsoo. 2013. TressFX 2.0 and Beyond (2013). Retrieved

July 24, 2014 from http://www.slideshare.net/DevCentralAMD/gs4147-billbilodeau#

Burnes, Andrew. 2014. The Witcher 3: Wild Hunt Highlights NVIDIA HairWorks In

New 37 Minute Video | GeForce. Retrieved September 14, 2014 from

http://www.geforce.com/whats-new/articles/gamescom-2014-witcher-3-gameworks

Engel, Wolfgang. 2014. GPU Pro 5. Advanced rendering techniques. CRC Press, Boca

Raton, FL. ISBN-13: 978-1482208634.

Engel, Wolfgang and Hodes, Stephan. 2013. Hair Rendering in Tomb Raider (2013).

Retrieved July 23, 2014 from http://www.slideshare.net/WolfgangEngel/hair-

intombraider-final#

Gentle, James E. 2003. Random Number Generation and Monte Carlo Methods.

Statistics and computing (2nd. ed.). Springer, New York. ISBN-13: 978-0387001784.

Götz, Kai. 2014a. Appealing haircuts in Cinema 4D.

Götz, Kai. 2014b. Export Cinema 4D Hair to Frapper.

Hamilton, Howard J. 2014. Uniform Cubic B-Spline Curves. Retrieved September 12,

2014 from

http://www2.cs.uregina.ca/~anima/408/Notes/Interpolation/UniformBSpline.htm

Han, Dongsoo. 2014. Hair Simulation in TressFX. GPU Pro 5 (2014).

Han, Dongsoo and Harada, Takahiro. 2012. Real-time Hair Simulation with Efficient

Hair Style Preservation (2012). Retrieved July 24, 2014 from

http://www.potentialmotion.com/home/hairsimulation

Helzle, Volker, Spielmann, Simon, and Arellano, Diana. 2014. Frapper. Retrieved

October 9, 2014 from https://sourceforge.net/projects/frapper/

Real-Time Hair Rendering 9. References

 74

Intel. 2010. ARK | Intel® Xeon® Processor X5660 (12M Cache, 2.80 GHz, 6.40 GT/s

Intel® QPI) (2010). Retrieved October 22, 2014 from

http://ark.intel.com/products/47921/Intel-Xeon-Processor-X5660-(12M-Cache-2_80-

GHz-6_40-GTs-Intel-QPI)

Kajiya, James T. and Kay, Timothy L. 1989. Rendering fur with three dimensional

textures. SIGGRAPH Comput. Graph. 23, 3 (1989), 271–280.

DOI:10.1145/74334.74361

Khronos Group. 2014a. OpenGL 4.5 (Core Profile) - August 8, 2014 (Aug. 2014).

Retrieved September 2, 2014 from

http://www.opengl.org/registry/doc/glspec45.core.pdf

Khronos Group. 2014b. OpenGL 4.5 (Quick-Reference-Card) (Aug. 2014). Retrieved

September 2, 2014 from http://www.khronos.org/files/opengl45-quick-reference-

card.pdf

Khronos Group. 2014c. Rendering Pipeline Overview - OpenGL.org. Retrieved

September 2, 2014 from http://www.opengl.org/wiki/Rendering_Pipeline_Overview

Kim, Tae-Yong. 2014. Bringing Digital Fur to Computer Games (Mar. 2014).

Retrieved July 25, 2014 from http://on-

demand.gputechconf.com/gtc/2014/video/S4179-digital-fur-computer-games.mp4

Kim, Tae-Yong, Chentanez, Nuttapong, and Müller, Matthias. 2012. Long Range

Attachments - A Method to Simulate Inextensible Clothing in Computer Games

(2012). Retrieved July 25, 2014 from http://matthias-mueller-

fischer.ch/publications/sca2012cloth.pdf

Kim, Tae-Yong and Neumann, Ulrich. 2001. Opacity Shadow Maps (2001). Retrieved

July 17, 2014 from http://game-tech.com/Reading/EGRW_KIM2001H.pdf

Lokovic, Tom and Veach, Eric. 2000. Deep Shadow Maps (2000). Retrieved July 24,

2014 from http://dl.acm.org/citation.cfm?id=344958

Marschner, Stephen R., Jensen, Henrik Wann, Cammarano, Mike, Worley, Steve, and

Hanrahan, Pat. 2003. Light Scattering from Human Hair Fibers. ACM Trans. Graph.

22, 3 (2003), 780. DOI:10.1145/882262.882345

Martin, Timothy, Engel, Wolfgang, Thibieroz, Nicolas, Yang, Jason, and Lacroix,

Jason. 2014. TressFX: Advanced Real-Time Hair Rendering. GPU Pro 5 (2014).

McKee, Jay. 2011. Real-Time Concurrent Linked List Construction on the GPU (2011).

Retrieved July 24, 2014 from

http://developer.amd.com/wordpress/media/2013/06/2041_final.pdf

Real-Time Hair Rendering 9. References

 75

McMullen, Max. 2014. Direct3D 12 API Preview. Retrieved September 24, 2014 from

https://channel9.msdn.com/Events/Build/2014/3-564

Müller, Matthias, Kim, Tae-Yong, and Chentanez, N. 2012. Fast Simulation of

Inextensible Hair and Fur (2012). Retrieved July 25, 2014 from http://matthias-

mueller-fischer.ch/publications/FTLHairFur.pdf

Nguyen, Hubert and Donnelly, William. 2004. Hair Animation and Rendering in the

Nalu Demo. Retrieved July 17, 2014 from

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html

NVIDIA. 2004. Nalu Demo | GeForce 6800 (Jul. 2004). Retrieved October 7, 2014

from http://www.nvidia.de/coolstuff/demos#!/nalu

NVIDIA. 2010a. NVIDIA GeForce GTX 580 | NVIDIA UK (2010). Retrieved

September 22, 2014 from http://www.nvidia.co.uk/object/product-geforce-gtx-580-

in.html

NVIDIA. 2010b. Fermi Hair Demo | GeForce GTX 400 series (Apr. 2010). Retrieved

July 18, 2014 from http://www.geforce.com/games-applications/pc-

applications/fermi-hair-demo

NVIDIA. 2014a. NVIDIA Nsight (2014). Retrieved September 22, 2014 from

http://www.nvidia.com/object/nsight.html

NVIDIA. 2014b. NVIDIA HairWorks (Jun. 2014). Retrieved October 21, 2014 from

https://developer.nvidia.com/hairworks

NVIDIA. 2014c. NVIDIA HairWorks tools released (Jun. 2014). Retrieved July 25,

2014 from https://developer.nvidia.com/content/nvidia-hairworks-tools-released

NVIDIA. 2014d. Cg Profiles. Retrieved September 1, 2014 from

https://developer.nvidia.com/cg-profiles

NVIDIA. 2014e. Cg Toolkit. Retrieved September 1, 2014 from

https://developer.nvidia.com/cg-toolkit

OGRE. 2014. OGRE – Open Source 3D Graphics Engine. Retrieved September 1, 2014

from http://www.ogre3d.org/

Persson, Emil. 2011. Geometric Post-process Anti-Aliasing (Mar. 2011). Retrieved July

24, 2014 from http://www.humus.name/index.php?page=3D&ID=86

Pipenbrinck, Nils. 2013. Hermite Curve Interpolation. Retrieved September 12, 2014

from http://cubic.org/docs/hermite.htm

Rutter, John W. 2000. Geometry of Curves. Chapman & Hall/CRC mathematics.

Chapman & Hall/CRC, Boca Raton, Fla. ISBN-13: 978-1584881667.

Real-Time Hair Rendering 9. References

 76

Sadeghi, Iman, Pritchet, Heather, Jensen, Henrik W., and Tamstorf, Rasmus. 2010. An

Artist Friendly Hair Shading System (2010). Retrieved September 15, 2014 from

http://graphics.ucsd.edu/~iman/an_artist_friendly_hair_shading_system.php

Scheuermann, Thorsten. 2004. Practical Real-Time Hair Rendering and Shading

(2004). Retrieved July 16, 2014 from http://amd-dev.wpengine.netdna-

cdn.com/wordpress/media/2012/10/Scheuermann_HairSketch.pdf

Tariq, Sarah. 2008. Real-Time Hair Rendering on GPU - SIGGRAPH 2008 (2008).

Retrieved July 18, 2014 from

http://developer.download.nvidia.com/presentations/2008/SIGGRAPH/RealTimeHair

Rendering_SponsoredSession2.pdf

Tariq, Sarah. 2010a. Data Management and Rendering Pipeline - SIGGRAPH 2010

Course Notes (2010). Retrieved July 18, 2014 from

http://www.sarahtariq.com/Chapter2a-

HairCourseNotes_DataManagementandRenderingPipeline.pdf

Tariq, Sarah. 2010b. Hair Dynamics for Real-time Applications - SIGGRAPH 2010

Course Notes (2010). Retrieved July 18, 2014 from

http://www.sarahtariq.com/Chapter7-

HairCourseNotes_HairDynamicsforRealTimeApplications.pdf

Tariq, Sarah. 2010c. Transparency and Antialiasing - SIGGRAPH 2010 Course Notes

(2010). Retrieved July 18, 2014 from http://www.sarahtariq.com/Chapter3-

HairCourseNotes_AntialiasingAndTransparency.pdf

Tariq, Sarah. 2010d. Hair SDK White Paper (Mar. 2010). Retrieved July 17, 2014 from

https://developer.nvidia.com/sites/default/files/akamai/gamedev/files/sdk/11/HairSD

KWhitePaper.pdf

Tariq, Sarah and Bavoil, Louis. 2008a. Real Time Hair Simulation and Rendering on

the GPU (Aug. 2008). Retrieved July 18, 2014 from

http://dl.acm.org/citation.cfm?id=1401032.1401080&coll=DL&dl=GUIDE

Tariq, Sarah and Bavoil, Louis. 2008b. Real-Time Hair Simulation and Rendering on

the GPU - SIGGRAPH 2008 Presentation (Aug. 2008). Retrieved July 18, 2014 from

http://developer.download.nvidia.com/presentations/2008/SIGGRAPH/RealTimeHair

SimulationAndRenderingOnGPU.pdf

Thibieroz, Nicolas and Hillesland, Karl. 2014. Grass, Fur and all Things Hairy - AMD

at GDC14. Retrieved July 24, 2014 from

http://www.slideshare.net/DevCentralAMD/grass-fur-and-all-things-hairy-amd-at-

gdc14

Real-Time Hair Rendering 9. References

 77

Yu, Xuan, Yang, Jason C., Hensley, Justin, Harada, Takahiro, and Yu, Jingyi. 2012. A

Framework for Rendering Complex Scattering Effects on Hair (2012). Retrieved July

24, 2014 from http://dl.acm.org/citation.cfm?id=2159635

Yuksel, Cem and Keyser, John. 2008a. Deep Opacity Maps (Feb. 2008). Retrieved July

22, 2014 from

http://www.cemyuksel.com/research/deepopacity/deepopacitymaps.pdf

Yuksel, Cem and Keyser, John. 2008b. Deep Opacity Maps - EUROGRAPHICS 2008

Presentation (Feb. 2008). Retrieved July 22, 2014 from

http://www.cemyuksel.com/research/deepopacity/deepopacitymaps_slides.pdf

Yuksel, Cem and Tariq, Sarah. 2010. Advanced Techniques in Real-time Hair

Rendering and Simulation - SIGGRAPH 2010 Course Notes (2010). Retrieved July

18, 2014 from http://dl.acm.org/citation.cfm?id=1837101.1837102

Zinke, Arno and Weber, Andreas. 2007. Light scattering from filaments. IEEE Trans

Vis Comput Graph 13, 2 (2007), 342–356. DOI:10.1109/TVCG.2007.43

Zinke, Arno, Yuksel, Cem, Weber, Andreas, and Keyser, John. 2008. Dual Scattering

Approximation for Fast Multiple Scattering in Hair (Aug. 2008). Retrieved

September 24, 2014 from

http://www.cemyuksel.com/research/dualscattering/dualscattering.pdf

Real-Time Hair Rendering 10. List of Figures

 78

1 0 . L i s t o f F i g u r e s

Figure 1: Hair rendering of Ruby by [Scheuermann 2004] .. 3

Figure 2: Screenshot of NVIDIA Nalu demo [NVIDIA 2004] .. 4

Figure 3: NVIDIA Fermi Hair Demo screenshot [NVIDIA 2010b] 5

Figure 4: Screenshot of NVIDIA HairWorks Viewer [NVIDIA 2014b] 10

Figure 5: AMD TressFX11 v2.0 screenshot [AMD 2013] ... 12

Figure 6: Rendering pipeline in Tomb Raider [Engel and Hodes 2013] 13

Figure 7: OpenGL tessellation pipeline overview .. 19

Figure 8: Vertex shader ... 20

Figure 9: Vertex shader predefined output ... 20

Figure 10: Tessellation control shader .. 21

Figure 11: Output patch size definition .. 21

Figure 12: TES predefined output .. 21

Figure 13: Tessellator ... 22

Figure 14: Tessellation evaluation shader .. 23

Figure 15: Tessellation options definition .. 23

Figure 16: Geometry shader ... 24

Figure 17: Geometry shader input and output declaration ... 25

Figure 18: Geometry shader instancing .. 25

Figure 19: Fragment shader .. 26

Figure 20: In-shader specification .. 27

Figure 21: Isoline example equal_spacing ... 28

Figure 22: Isoline example fractional_even_spacing 29

Figure 23: Isoline example fractional_odd_spacing .. 30

Figure 24: Guide hairs and scalp mesh (left), guide hairs and scalp mesh with rendered

hair (right) ... 32

Figure 25: Archimedean spiral implementation glsl ... 33

Figure 26: Results Archimedean spiral ... 34

Figure 27: Rendering of coordinate frames for Fermi Hair Demo [NVIDIA 2010b] 34

Real-Time Hair Rendering 10. List of Figures

 79

Figure 28: Random circular coordinates glsl implementation .. 35

Figure 29: Result random circular coordinates ... 35

Figure 30: Multi strand interpolation simple example .. 36

Figure 31: Calculation of a random barycentric value ... 37

Figure 32: Results multi strand interpolation ... 37

Figure 33: Attempt to fix separate wisp and parting problem .. 38

Figure 34: Result of single strand and multi strand interpolation combined 39

Figure 35: Different hair sizes first iteration .. 40

Figure 36: Different hair sizes second iteration .. 40

Figure 37: Different hair sizes third iteration ... 41

Figure 38: Expansion of isolines into camera facing quads ... 42

Figure 39: Hair strand tapering (1, 2, 3 and 6 segments) .. 42

Figure 40: Hermite curve interpolation with detail tessellation factor 1, 2, 16 and 64 .. 44

Figure 41: Uniform cubic b-spline interpolation with tessellation factor 1, 2, 16 and 32

 .. 46

Figure 42: Uniform cubic b-splines start and end segment .. 46

Figure 43: Creation of curl deviations for curly hair .. 47

Figure 44: Curly hair results with no curl offset, low curl offset, increased curl offset

and increased curl offset with hair strand tessellation .. 48

Figure 45: Random strand length generation .. 49

Figure 46: Thinning in TES and adjustment of hair tapering ... 49

Figure 47: Thinning with value 0.0, 0.5 and 1.0 (top to bottom) 50

Figure 48: Creation of random deviations .. 52

Figure 49: Hair style (full hair and zoomed) with random deviation scale 0, 0.025 and

0.05 left to right .. 53

Figure 50: Hair with LOD slider set to 0.1, 0.5 and 1.0 ... 54

Figure 51: Example of SSALOD with bend angle minimum 5, bend angle max 45 and

hair segment screen space size of 40, 15 and 4 from top to bottom. 55

Figure 52: Hair culling with culling scale 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 56

Figure 53: Hair model [Sadeghi et al. 2010] .. 56

Figure 54: Hair shading glsl code ... 57

Real-Time Hair Rendering 10. List of Figures

 80

Figure 55: Sara hair style with hair shading ... 58

Figure 56: Hair geometry part1 .. 60

Figure 57: Hair geometry part 2 ... 60

Figure 58: Hair LOD ... 61

Figure 59: Hair Lighting ... 62

Figure 60: Light Definition ... 62

Figure 61: Test application setup NVIDIA Nsight ... 64

Figure 62: Test application setup Fraps .. 65

Figure 63: Comparison Sara hair style detail factor 1 (top left), detail factor 2 (top

right), detail factor 64 (down left) and SSALOD with segment screen size 15 (down

right) .. 66

Figure 64: NVIDIA Fermi hair demo setup Fraps detail factor 1 (left) and detail factor

64 (right) ... 66

Figure 65: Comparison Gunnar hair style detail factor 1 (top left), detail factor 2 (top

right), detail factor 64 (down left) and SSALOD with segment screen size 15 (down

right) .. 67

Figure 66: Test application setup NVIDIA Nsight Sara and Gunnar hair style 69

Figure 67: Character Sara with new hair rendering system .. 70

Real-Time Hair Rendering 11. List of Tables

 81

1 1 . L i s t o f T a b l e s

Table 1: Test application setup ... 63

Table 2: Results NVIDIA Nsight profiler ... 64

Table 3: Results Fraps profiling .. 65

Table 4: Sara/Gunnar/NVIDIA Fermi hair style results Fraps profiling with different

tessellation settings ... 67

Table 5: Sara/Gunnar results NVIDIA Nsight profiler ... 68

Real-Time Hair Rendering 12. List of Abbreviations

 82

1 2 . L i s t o f A b b r e v i a t i o n s

2D two-dimensional

ADHD attention-deficit/hyperactivity disorder

AMD Advanced Micro Devices

ASD autism spectrum disorder

CPU central processing unit

DFG German research foundation

ELC edge length constraint

FPS frames per second

glsl OpenGL shading language

GPAA geometric post-process anti-aliasing

GPGPU general purpose computing on graphics processing units

GPU graphics processing unit

GSC global shape constraint

ID index

LOD level of detail

LSC local shape constraint

MSAA multi sampled anti-aliasing

OIT order independent transparency

OpenGL open graphics library

PPLL per-pixel linked list

R primary highlight

SARA stylized animations for research on autism

SSAA super sampled anti-aliasing

SSALOD screen space adaptive level of detail

TCS tessellation control shader

TES tessellation evaluation shader

TRT secondary highlight

TT rim light

	Abstract
	Declaration of Originality
	Acknowledgements
	Contents
	1. Introduction
	2. Related Work
	2.1. NVIDIA Fermi Hair Demo 2008
	2.2. NVIDIA HairWorks
	2.3. AMD TressFX

	3. Requirements
	4. OpenGL Tessellation Rendering Pipeline
	4.1. Vertex Shader
	4.2. Tessellation Control Shader
	4.3. Tessellator
	4.4. Tessellation Evaluation Shader
	4.5. Geometry Shader
	4.6. Fragment Shader
	4.7. Tessellation Primitive Isolines

	5. Implementation
	5.1. Input Data
	5.2. Single Strand Interpolation
	5.3. Multi Strand Interpolation
	5.4. Combination of Single Strand and Multi Strand Interpolation
	5.5. Handling Different Hair Guide Sizes
	5.6. Expand Lines into Camera Facing Quads
	5.7. Hair Form
	5.8. Hair Strand Tessellation
	5.8.1. Hermite Curve Interpolation
	5.8.2. Uniform Cubic B-Splines

	5.9. Curly Hair
	5.10. Thinning
	5.11. Random Deviations
	5.12. Level of Detail
	5.12.1. Screen Space Adaptive Level of Detail
	5.12.2. Hair Culling

	5.13. Hair Shading

	6. Character Rendering System Integration
	6.1. Hair Geometry
	6.2. Hair LOD
	6.3. Hair Lighting
	6.4. Light Definition

	7. Hair Rendering Performance Analysis
	8. Conclusion
	8.1. Future Work

	9. References
	10. List of Figures
	11. List of Tables
	12. List of Abbreviations

